基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf

基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf

ID:52208913

大小:210.46 KB

页数:5页

时间:2020-03-25

基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf_第1页
基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf_第2页
基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf_第3页
基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf_第4页
基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf_第5页
资源描述:

《基于小波包系数与隐马尔科夫模型的刀具磨损监测.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、机床与液压Jun.2014HydromechatronicsEngineeringVo1.42No.12DOI:10.3969/j.issn.1001—3881.2014.12.008Tool1wemarmonmitorin~basedonwaveletpackKetcoefHfiicilentandohiddenMarkovmodelYingQIU,Feng—yunXIESchoolofMechanicalandElectronicalEngineering,EastChinaJiaotongUniversity

2、,Nanchang330013,ChinaAbstract:Inordertopreventtoolfailuresduringtheautomationmachiningprocess,thetoolwearmonitoringbecomesveryimpo~ant.However.thestaterecognitionofthetoolwearisnotaneasytask.Inthispaper,anapproachbasedonwaveletpacketcoeficientandhiddenMarkovmo

3、del(HMM)fortoolwearmonitoringisproposed.Therootmeansquare(RMS)ofthewave-letpacketcoeficientsatdiferentscalesaretakenasthefeatureobsewationsvector.TheaD-proachofHMMpa~ernrecognitionisusedtorecognizethestatesoftoolwear.Theexperimentalresultshaveshownthatthepropo

4、sedmethodhasagoodrecognitionperformance.Keywords:Too1wear,Waveletpacketcoeficient,HiddenMarkovmodeI,RootmeansquareToolwearmonitoringiscrucialinordertopre-taforthelearningalgorithm.Otherwise,itwillre—venttoolfailuresduringtheautomationmachiningducetherecognitio

5、nrateofthetoolwear.process.However,theon-linetoolwearmonitoringisInthispaper,anapproachbasedonwaveletnotaneasytaskduetothecomplexityoftheprocess.packetcoeficientandHMMfortoolwearmonitoringFormanyyears,lotsofscholarshavestudiedtoolisproposed.Inordertomonitorthe

6、toolwearstateswearmonitoringbyvariousmethods.Thereareim-inmachiningprocess,thedynamometerisusedforportantcontributionspresentedforconditionmonito·dataacquisition.Thewaveletpacketdecompositionisring,forinstance,on—linetoolmonitoringbyusingadoptedfordataprocessi

7、ng.TherootmeansquareArtificialintelligencewaspresentedbyVallejo[1],a(RMS)ofthewaveletpacketcoeficientsatdifferentmethodofstaterecognitionsbasedonwaveletandscalesaretakenasthefeatureobservationsvector.hiddenMarkovmodel(HMM)waspresentedbyXieTheHMMisusedtorecogni

8、zethestatesoftoolwear.[2].On—lineconditionmonitoringbasedonempiri—Theresultsshowthattheproposedmethodhasarela—calmodedecompositionandneuralnetworkwaspro—tivelyhighrecognitionrate.p

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。