Eviews软件基本操作.ppt

Eviews软件基本操作.ppt

ID:52061019

大小:414.50 KB

页数:30页

时间:2020-03-31

Eviews软件基本操作.ppt_第1页
Eviews软件基本操作.ppt_第2页
Eviews软件基本操作.ppt_第3页
Eviews软件基本操作.ppt_第4页
Eviews软件基本操作.ppt_第5页
资源描述:

《Eviews软件基本操作.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1讲EViews软件的基本操作【实验目的】了解EViews软件的基本操作对象,掌握软件的基本操作。【实验内容】一、EViews软件的安装;二、数据的输入、编辑与序列生成;三、序列的统计量、检验和分布四、图形分析与描述统计分析;五、数据文件的存贮、调用与转换。序列的统计量、检验和分布EViews提供序列的各种统计图、统计方法及过程。当用前述的方法向工作文件中读入数据后,就可以对这些数据进行统计分析和图表分析。EViews可以计算一个序列的各种统计量并可用表、图等形式将其表现出来。视图包括最简单的曲线图,一直到核

2、密度估计。打开工作文件,双击一个序列名,即进入序列的对话框。单击“view”可看到菜单分为四个区,第一部分为序列显示形式,第二和第三部分提供数据统计方法,第四部分是转换选项和标签。§1.1描述统计量以直方图显示序列的频率分布。直方图将序列的长度按等间距划分,显示观测值落入每一个区间的个数。同直方图一起显示的还有一些标准的描述统计量。这些统计量都是由样本中的观测值计算出来的。如图(例1.1):例1.3中GDP增长率的统计量:均值(mean)即序列的平均值,用序列数据的总和除以数据的个数。中位数(median)即从

3、小到大排列的序列的中间值。是对序列分布中心的一个粗略估计。最大最小值(maxandmin)序列中的最大最小值。标准差(StandardDeviation)标准差衡量序列的离散程度。计算公式如下N是样本中观测值的个数,是样本均值。偏度(Skewness)衡量序列分布围绕其均值的非对称性。计算公式如下是变量方差的有偏估计。如果序列的分布是对称的,S值为0;正的S值意味着序列分布有长的右拖尾,负的S值意味着序列分布有长的左拖尾。例1.1中X的偏度为0,说明X的分布是对称的;而例1.3中GDP增长率的偏度是0.78,说

4、明GDP增长率的分布是不对称的。峰度(Kurtosis)度量序列分布的凸起或平坦程度,计算公式如下分布的凸起程度大于正态分布;如果K值小于3,序列分布相对于正态分布是平坦的。例1.1中X的峰度为2.5,说明X的分布相对于正态分布是平坦的;而例1.3中GDP增长率的峰度为2.14,说明GDP增长率的分布相对于正态分布也是平坦的。意义同S中,正态分布的K值为3。如果K值大于3,Jarque-Bera检验检验序列是否服从正态分布。统计量计算公式如下S为偏度,K为峰度,k是序列估计式中参数的个数。在正态分布的原假设下,

5、J-B统计量是自由度为2的2分布。J-B统计量下显示的概率值(P值)是J-B统计量超出原假设下的观测值的概率。如果该值很小,则拒绝原假设。当然,在不同的显著性水平下的拒绝域是不一样的。例1.1中X的J-B统计量下显示的概率值(P值)是0.92,接受原假设,X服从正态分布;而例1.3中GDP增长率的的J-B统计量的概率值(P值)是0.455,也接受原假设,说明GDP增长率服从正态分布。§1.2均值、中位数、方差的假设检验这部分是对序列均值、中位数、方差的假设检验。在序列对象菜单选择View/testsforde

6、scriptivestats/simplehypothesistests,就会出现下面的序列分布检验对话框:1.均值检验如果不指定序列x的标准差,EViews将在t–统计量中使用该标准差的估计值s。是x的样本估计值,N是x的观测值的个数。在原假设下,如果x服从正态分布,t统计量是自由度为N-1的t分布。原假设是序列x的期望值m,备选假设是≠m,即如果给定x的标准差,EViews计算t统计量:是指定的x的标准差。要进行均值检验,在Mean内输入值。如果已知标准差,想要计算t统计量,在右边的框内输入标准差

7、值。可以输入任何数或标准EViews表达式,下页我们给出检验的输出结果。这是检验例1.7中GDP增长率的均值,检验H0:X=10%,H1:X≠10%。表中的Probability值是P值(边际显著水平)。在双边假设下,如果这个值小于检验的显著水平,如0.05则拒绝原假设。这里我们不能拒绝原假设。2.方差检验检验的原假设为序列x的方差等于2,备选假设为双边的,x的方差不等于2,即EViews计算2统计量,计算公式如下N为观测值的个数,为x的样本均值。在原假设下,如果x服从正态分布,2统计量是服从自由度

8、为N-1的2分布。要进行方差检验,在Variance处填入在原假设下的方差值。可以填入任何正数或表达式。3.中位数检验原假设为序列x的中位数等于m,备选假设为双边假设,x的中位数不等于m,即EViews提供了三个以排序为基础的无参数的检验统计量。方法的主要参考来自于Conover(1980)和Sheskin(1997)。进行中位数检验,在Median右边的框内输入中位数的值,可以输入

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。