欢迎来到天天文库
浏览记录
ID:52052576
大小:479.00 KB
页数:10页
时间:2020-03-31
《在相交线的模型中,固定木条a,转动木条b,.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、5.1相交线(5.1.2垂线)在相交线的模型中,固定木条a,转动木条b,当α=90°时,a与b垂直.当b的位置变化时,a、b所成的角α也会发生变化.当α≠90°时,a与b不垂直,叫斜交.两条直线相交斜交垂直垂直是相交的特殊情况观察思考)αabbbbb)α1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。例如、如图,a、b互相垂直,O叫垂足.a叫b的垂线,b也叫a的垂线。baO一、垂直的定义从垂直的定义可知,判断两条直线互相垂直的关键:
2、只要找到两条直线相交时四个交角中一个角是直角。1.垂直定义:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。ba用“⊥”和直线字母表示垂直Oα2.垂直的表示:例如、如图,a、b互相垂直,垂足为O,则记为:a⊥b或b⊥a,若要强调垂足,则记为:a⊥b,垂足为O.日常生活中,两条直线互相垂直的情形很常见,说出图5.1-6中的一些互相垂直的线条.你能再举出其他例子吗?ABCDO书写形式:如图,当直线AB与CD相交于O点,∠AOD=90°时,AB⊥CD,
3、垂足为O。∵∠AOD=90°(已知)∴AB⊥CD(垂直的定义)书写形式:反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90°。3.垂直的书写形式:∵AB⊥CD(已知)∴∠AOD=90°(垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90°例1如图,直线AB、CD相交于点O,OE⊥AB,∠1=55°,求∠EOD的度数.ACEBDO1∴∠EOB=90°(垂直的定义)∴∠EOD=∠EOB+∠BOD=90°+55°=145°(解:∵AB⊥OE(已知)∵∠BOD=∠1=55°(对顶角相等)二、例题例2如图
4、,直线AB、CD相交于点O,OE⊥AB于O,OB平分∠DOF,∠DOE=50°,求∠AOC、∠EOF、∠COF的度数.ACEBDO∴∠EOB=90°(垂直的定义)∴∠COF=∠COD-∠DOF=180°-80°=100°(邻补角定义)解:∵AB⊥OE(已知)∴∠AOC=∠DOB=40°(对顶角相等)F∵∠DOE=50°(已知)∴∠DOB=40°(互余的定义)又∵OB平分∠DOF∴∠BOF=∠DOB=40°(角平分线定义)∴∠EOF=∠EOB+∠BOF=90°+40°=130°作业:P9/3补充:如图,直线AB、CD
5、相交于点O,OE⊥AB,∠1=125°,求∠COE的度数.ACEBDO1)再见
此文档下载收益归作者所有