是格,则运算∨和5、∧适合交换律、结合律、幂等律和吸收律,即(1)a,b∈L有a∨b=b∨a,a∧b=b∧a(2)a,b,c∈L有(a∨b)∨c=a∨(b∨c),(a∧b)∧c=a∧(b∧c)(3)a∈L有a∨a=a,a∧a=a(4)a,b∈L有a∨(a∧b)=a,a∧(a∨b)=a6证明(1)a∨b是{a,b}的最小上界,b∨a是{b,a}的最小上界.由于{a,b}={b,a},所以a∨b=b∨a.由对偶原理,a∧b=b∧a.(2)由最小上界的定义有(a∨b)∨c≽a∨b≽a(1)(a∨b)∨c≽a∨b≽b(2)
6、(a∨b)∨c≽c(3)由式(2)和(3)有(a∨b)∨c≽b∨c(4)由式(1)和(4)有(a∨b)∨c≽a∨(b∨c)同理可证(a∨b)∨c≼a∨(b∨c)根据反对称性(a∨b)∨c=a∨(b∨c)由对偶原理,(a∧b)∧c=a∧(b∧c)7证明(3)显然a≼a∨a,又由a≼a可得a∨a≼a.根据反对称性有a∨a=a.由对偶原理,a∧a=a得证.(4)显然a∨(a∧b)≽a(5)由a≼a,a∧b≼a可得a∨(a∧b)≼a(6)由式(5)和(6)可得a∨(a∧b)=a,根据对偶原理,a∧(a∨b)=a8格的性质:序与运算的关系定理11.2设L是格,则
7、a,b∈L有a≼ba∧b=aa∨b=b证(1)先证a≼ba∧b=a由a≼a和a≼b可知a是{a,b}的下界,故a≼a∧b.显然有a∧b≼a.由反对称性得a∧b=a.(2)再证a∧b=aa∨b=b根据吸收律有b=b∨(b∧a)由a∧b=a和上面的等式得b=b∨a,即a∨b=b.(3)最后证a∨b=ba≼b由a≼a∨b得a≼a∨b=b9格的性质:保序定理11.3设L是格,a,b,c,d∈L,若a≼b且c≼d,则a∧c≼b∧d,a∨c≼b∨d例4设L是格,证明a,b,c∈L有a∨(b∧c)≼(a∨b)∧(a∨c).证a∧c≼a≼b,a∧c≼c≼d因此a∧c≼b∧d
8、.同理可证a∨c≼b∨d证由a≼a,b∧c≼b得a∨(b∧c)≼a∨b由a≼a,b∧c≼c得a∨(b∧c)≼a∨c从而得到a∨(b∧c)≼(a∨b)∧(a∨c)注意:一般说来,格中的∨和∧运算不满足分配律.10格作为代数系统的定义定理11.4设是具有两个二元运算的代数系统,若对于∗和◦运算适合交换律、结合律、吸收律,则可以适当定义S中的偏序≼,使得构成格,且a,b∈S有a∧b=a∗b,a∨b=a◦b.证明省略.根据定