欢迎来到天天文库
浏览记录
ID:51964706
大小:1.08 MB
页数:39页
时间:2020-03-26
《土木工程测量 第2版 教学课件 作者 张凤兰 电子课件 第五章 测量误差的基本知识.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5章测量误差的基本知识5.1测量误差概述5.2评定精度的标准5.3观测值与算术平均值的中误差5.4误差传播定律5.5不等精度观测值平差[本章提要]在观测过程中,系统误差和偶然误差同时存在。当观测值中有显著的系统误差时,偶然误差就居于次要地位,观测误差呈现出系统的性质;反之,呈现出偶然的性质。因此,对一组剔除了粗差的观测值,首先应寻找、判断和排除系统误差,或将其控制在允许范围内,然后根据偶然误差的特性对该组观测值进行数学处理,求出最接近未知量真值的估值,称为最或是值;同时,评定观测结果质量的优劣,即评定精度。这项工作
2、在测量上称为测量平差,简称平差。本章主要讨论偶然误差及其平差。[教学要求]1.掌握观测误差和偶然误差的特性;2.评定精度的标准;3.掌握同精度观测值的中误差和算术平均值概念及其中误差;4.熟悉误差传播定律并会计算函数中误差;5.了解广义算术平均值及权;单位权中误差的计算等。5.1测量误差概述1.误差(error)的定义误差即观测值与真值之间的差值△=L-X2.测量误差产生的原因观测条件:观测者、仪器、外界条件不等精度观测:观测条件不同的各次观测,其结果具有不同精度。等精度观测:观测条件相同的各次观测,其结果具有同等精
3、度。3.测量误差的分类及处理方法系统误差(systemerror)在相同的观测条件下,对某一量进行一系列的观测,误差出现的符号和数值都相同,或按一定的规律变化。偶然误差(accidenterror)在相同的观测条件下,对某一量进行一系列的观测,误差出现的符号和数值从单个上看没有规律性,而从整体上分析却具有一定的统计规律性。又称真误差(tureerror)。粗差(grosserror)在观测中出现的读错、记错或测错等,统称为粗差。粗差在观测结果中是不允许出现的。为了杜绝粗差的产生,除需认真仔细作业外,必须采取必要的检核
4、措施。4.偶然误差的特性设三角形闭合差为处理方法系统误差可以采取以下方法进行处理:1)对称观测;2)加改正数;3)将系统误差限制在允许范围内。0~3300.138290.134590.2723~6210.097200.092410.1896~9150.069180.083330.1529~12140.065160.073300.13812~15120.055100.046220.10115~1880.03780.037160.07418~2150.02360.028110.05121~2420.00920.00940
5、.01824~2710.0050010.00527以上000000合计1080.4981090.5022171.000正误差个数k频率k/n负误差误差区间dΔ(″)合计个数k个数k频率k/n频率k/n偶然误差分布情况统计(1)在一定的观测条件下,偶然误差的绝对值不会超过一定的限度;(2)绝对值小的误差比绝对值大的误差出现的可能性大;(3)绝对值相等的正误差与负误差出现的机会相等;(4)当观测次数无限增多时,偶然误差的算术平均值趋近于零。即偶然误差具有如下特性:直方图误差分布曲线误差分布函数1.平均误差平均误差即算术平
6、均误差,其定义为:在对某量进行一系列观测中,各次观测误差的绝对值的算术平均值叫算术平均误差,记为。。当n较大时,可用下式估算为:5.2评定精度的指标2.中误差定义标准差(standarddeviation)中误差(meansquareerror)*在一定的观测条件下,标准差是一个固定的常数,而中误差则是随着观测次数的多少及读取的观测值大小而改变的随机变量,当观测次数逐渐增大时,中误差逐渐趋近于标准差。是反映一组真误差离散程度的指标。中误差的计算例:同精度下对某一三角形进行了10次观测,求得每次观测所得的三角形闭合差分
7、别为(单位:″):3,-2,-4,2,0,-4,3,2,-3,-1。另一台仪器的结果(单位:″):3,1,-2,2,0,-3,2,1,-1,0。3.容许误差和极限误差容许误差极限误差(limiterror)4.相对误差(relativeerror)定义误差的绝对值与观测值之比称为该观测值的相对误差,常用1/N的形式表示。例:分别丈量了100m及200m的两段距离,观测值的中误差均为±2cm,试比较两者的观测成果质量。中误差的绝对值与观测值之比称为该观测值的相对中误差K。5.3观测值与算术平均值的中误差1.算术平均值(
8、arithmeticaverage)即,n趋近无穷大时,算术平均值即为真值。设在相同的观测条件下对某未知量观测了n次,观测值为l1,l2,l3,…ln,现在要根据这n个观测值确定出该未知量的最或然值。设未知量的真值为X,以L表示上式观测值的算术平均值,则有式中:△i=li-X取极限:推导算术平均值的中误差公式式中,1/n为常数。由于各独立观测值
此文档下载收益归作者所有