高中数学立体几何知识点归纳总结.doc

高中数学立体几何知识点归纳总结.doc

ID:51931039

大小:124.50 KB

页数:7页

时间:2020-03-19

高中数学立体几何知识点归纳总结.doc_第1页
高中数学立体几何知识点归纳总结.doc_第2页
高中数学立体几何知识点归纳总结.doc_第3页
高中数学立体几何知识点归纳总结.doc_第4页
高中数学立体几何知识点归纳总结.doc_第5页
资源描述:

《高中数学立体几何知识点归纳总结.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、高中数学之立体几何平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1经过一条直线和这条直线外一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.空间线面的位置关系共面平行—没有公共点(1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—

2、没有公共点(直线在平面外)相交—有且只有一公共点(3)平面与平面相交—有一条公共直线(无数个公共点)平行—没有公共点异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b.③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c.④垂直于同一平面的两直线平行,即若a

3、⊥α,b⊥α,则a∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b.(2)两直线垂直的判定1.定义:若两直线成90°角,则这两直线互相垂直.2.一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b∥c,a⊥b,则a⊥c3.一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a⊥α,bα,a⊥b.4.如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a∥α,b⊥α,则a⊥b.5.

4、三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若aα,bα,a∥b,则a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,lα,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,lα,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,

5、那么过这两个点的直线与这个平面平行,即若Aα,Bα,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,aα,aβ,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,bα,b⊥a,则b∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或bα)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条

6、相交直线都垂直,那么这条直线垂直于这个平面.即若mα,nα,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,lβ,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面

7、没有公共点,那么这两个平面平行,即无公共点α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,bα,a∩b=P,a∥β,b∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,bα,c,dβ,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°α⊥β.②如果一

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。