2017届中考数学总复习(遵义专版)练习 中档题型训练(五) .doc

2017届中考数学总复习(遵义专版)练习 中档题型训练(五) .doc

ID:51878455

大小:223.50 KB

页数:3页

时间:2020-03-18

2017届中考数学总复习(遵义专版)练习 中档题型训练(五) .doc_第1页
2017届中考数学总复习(遵义专版)练习 中档题型训练(五) .doc_第2页
2017届中考数学总复习(遵义专版)练习 中档题型训练(五) .doc_第3页
资源描述:

《2017届中考数学总复习(遵义专版)练习 中档题型训练(五) .doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、中档题型训练(五) 圆的有关计算、证明与探究圆的有关计算与证明是遵义中考的必考内容之一,占有较大的比重,通常结合三角形、四边形等知识综合考查,以计算题、证明题的形式出现,解答此类问题要熟练掌握圆的基本性质,特别是切线的性质和判定,同时要注意已知条件之间的相互联系. 与圆的有关性质【例1】(2016黔西南模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,sinP=,求⊙O的直径.【解析】(1)通过圆周角转换找出一组内错角相等;(2)通过连接直径所对圆周角构造直角三角形,利用三角函数解决直径问题.[来

2、源:学优高考网]【学生解答】解:(1)∵∠C=∠P,∠1=∠C,∴∠1=∠P,∴CB∥PD;(2)连接AC,∵AB为⊙O的直径,∴∠ACB=90°.又∵CD⊥AB,∴=.∴∠P=∠CAB.∴sin∠CAB=sinP=,即=.又∵BC=3,∴AB=5.∴⊙O的直径为5.1.(2016遵义六中一模)如图,A,B是⊙O上的两点,∠AOB=120°,C是的中点.(1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若⊙O的半径R=1,求PC的长.解:(1)连接OC,∵∠AOB=120°,C是的中点,∴∠AOC=∠BOC=60°.∵OA=OC,∴△ACO

3、是等边三角形,∴OA=AC.同理OB=BC.∴OA=AC=BC=OB.∴四边形AOBC是菱形.∴AB平分∠OAC;(2)∵C为中点,∠AOB=120°,∴∠AOC=60°.∵OA=OC,∴△OAC是等边三角形.∴OA=AC,∵OA=AP,∴AP=AC.∴∠APC=30°.∴△OPC是直角三角形,PC=OC=. 圆的切线的性质与判定【例2】(2016遵义二中一模)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结

4、果保留π)[来源:学优高考网]【解析】(1)证∠ODC=∠ABC=90°;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD-S△BOD,即可求解.【学生解答】解:(1)连接OD,∵BC是⊙O的切线,∴∠ABC=90°.∵CD=CB,∴∠CBD=∠CDB.∵OB=OD,∴∠OBD=∠ODB.∴∠ODC=∠ABC=90°,即OD⊥CD.∵点D在⊙O上,∴CD为⊙O的切线;(2)在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=.∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠

5、BOF=120°.∴S阴影=S扇形OBD-S△BOD=-×2×1=π-.2.(2016南充中考)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于点O,OC=1,以点O为圆心OC为半径作半圆.(1)求证:AB为⊙O的切线;(2)如果tan∠CAO=,求cosB的值.解:(1)如图,作OM⊥AB于M,∵OA平分∠CAB,OC⊥AC,OM⊥AB,∴OC=OM,∴AB是⊙O的切线;(2)设BM=x,OB=y,则y2-x2=1 ①,∵cosB==,∴=,∴x2+3x=y2+y ②,由①②可以得到:y=3x-1,∴(3x-1)2-x2=1,∴x=,y=,∴c

6、osB==.3.(2016常德中考)如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.解:(1)如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABO+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线;(2)如图,设圆的半径为R,连接CD

7、,∵AD为⊙O的直径,∴∠ACD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠CAB,∴△DBE∽△CAB,∴=,∴=,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴=,∴=,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.4.(2016遵义航中二模)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积.(结果保留π)

8、解:(1)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。