欢迎来到天天文库
浏览记录
ID:51823811
大小:1.28 MB
页数:23页
时间:2020-03-16
《2016年上海市闵行区中考数学一模试卷含答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2016年上海市闵行区中考数学一模试卷 一、选择题(本大题共6题,每题4分,共24分)1.在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判定DE∥BC的是( )A.=B.=C.=D.= 2.将二次函数y=x2﹣1的图象向右平移一个单位,向下平移2个单位得到( )A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=(x﹣1)2﹣3D.y=(x+1)2+3 3.已知α为锐角,且sinα=,那么α的余弦值为( )A.B.C.D. 4.抛物线y=ax2+bx+c的图象经过原点和第一、二、三象限,那么下列结论成立的是( )A.a>0,b>0,c=0B.a>0,b<0,c=0C.a
2、<0,b>0,c=0D.a<0,b<0,c=0 5.在比例尺为1:10000的地图上,一块面积为2cm2的区域表示的实际面积是( )A.2000000cm2B.20000m2C.4000000m2D.40000m2 6.如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6.若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现( )A.3次B.4次C.5次D.6次 二、填空题(本大题共12小题,每题4分,满分48分)7.如果,那么= . 8.如果两个相似三角形周长的比是2:3,那
3、么它们的相似比是 . 9.已知线段AB的长为2厘米,点P是线段AB的黄金分割点(AP<BP),那么BP的长是 厘米. 10.如图,在△ABC中,∠ACB=90°,点F在边AC的延长线上,且FD⊥AB,垂足为点D,如果AD=6,AB=10,ED=2,那么FD= . 11.在Rt△ABC中,∠C=90°,cosA=,AC=2,那么BC= . 12.已知一条斜坡,向上前进5米,水平高度升高了4米,那么坡比为 . 13.过△ABC的重心作DE∥BC,分别交AB于点D,AC于点E,如果=,=,那么= . 14.方程ax2+bx+c=0(a≠0)
4、的两根为﹣3和1,那么抛物线y=ax2+bx+c(a≠0)的对称轴是直线 . 15.在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为 . 16.已知⊙O1与⊙O2内切,⊙O1的半径长是3厘米,圆心距O1O2=2厘米,那么⊙O2的半径长等于 厘米. 17.闵行体育公园的圆形喷水池的水柱(如图1)如果曲线APB表示落点B离点O最远的一条水流(如图2),其上的水珠的高度)y(米)关于水平距离x(米)的函数解析式为y=﹣x2+4x+,那么圆形水池的半径至少为 米时
5、,才能使喷出的水流不落在水池外. 18.将一副三角尺如图摆放,其中在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°.点D为边AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转角α(0°<α<60°)后得△E′DF′,DE′交AC于点M,DF′交BC于点N,那么的值为 . 三、解答题(本大题共7小题,满分78分)19.如图,已知Rt△ABC的斜边AB在x轴上,斜边上的高CO在y轴的正半轴上,且OA=1,OC=2,求经过A、B、C三点的二次函数解析式. 20.已知:如图,在⊙O中,弦CD垂直于直径AB,垂足为点E
6、,如果∠BAD=30°,且BE=2,求弦CD的长. 21.如图,已知四边形ABCD,点P、Q、R分别是对角线AC、BD和边AB的中点,设=,=.(1)试用,的线性组合表示向量;(需写出必要的说理过程)(2)画出向量分别在,方向上的分向量. 22.如图,一只猫头鹰蹲在树AC上的B处,通过墙顶F发现一只老鼠在E处,刚想起飞捕捉时,老鼠突然跑到矮墙DF的阴影下,猫头鹰立即从B处向上飞至树上C处时,恰巧可以通过墙顶F看到老鼠躲在M处(A、D、M、E四点在同一条直线上).已知,猫头鹰从B点观测E点的俯角为37°,从C点观察M点的俯角为53°,且DF=3米,AB=6米.求猫头鹰从B处飞高了多少米时,又发现
7、了这只老鼠?(结果精确到0.01米)(参考数据:sin37°=cos53°=0.602,cos37°=sin53°=0.799,tan37°=cot53°=0.754,cot37°=tan53°=1.327). 23.如图,已知在△ABC中AB=AC,点D为BC边的中点,点F在边AB上,点E在线段DF的延长线上,且∠BAE=∠BDF,点M在线段DF上,且∠EBM=∠C.(1)求证:EB•BD=BM
此文档下载收益归作者所有