欢迎来到天天文库
浏览记录
ID:51647937
大小:180.50 KB
页数:9页
时间:2020-03-14
《高二数学基本初等函数的导数公式综合测试题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学2-2导数知识要点导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则1.导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.②以知函数定义域为,的定义域为,则与关系为.2.函数在点处连续与点处可导的关系:⑴函数在点处连续是在点处可导的必要不充分条件.可以
2、证明,如果在点处可导,那么点处连续.事实上,令,则相当于.于是⑵如果点处连续,那么在点处可导,是不成立的.例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为4.几种常见的函数导数:5.求导数的四则运算法则:(为常数)注:①必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一
3、定不可导.例如:设,,则在处均不可导,但它们和在处均可导.6.复合函数的求导法则:或复合函数的求导法则可推广到多个中间变量的情形.7.函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x)=0,同样是f(x)递减的充分非必要条件.②一般地,如果f(x)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减
4、少)的.8.极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值;②如果在附近的左侧<0,右侧>0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①:若点是可导函数的极值点,则=0.但反过来不一定成立.对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.例如
5、:函数,使=0,但不是极值点.②例如:函数,在点处不可导,但点是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.选修2-21.2.2基本初等函数的导数公式及导数运算法则一、选择题1.函数y=(x+1)2(x-1)在x=1处的导数等于( )A.1 B.2 C.3 D.4[答案] D[解析] y′=[(x+1)2]′(x-1)+(x+1)2(x-1)′=2(x+1)·(x-1)+(x+1)2=3x2+2x-1,∴y′
6、x=1=4.2.若对任意x∈
7、R,f′(x)=4x3,f(1)=-1,则f(x)=( )A.x4B.x4-2C.4x3-5D.x4+2[答案] B[解析] ∵f′(x)=4x3.∴f(x)=x4+c,又f(1)=-1∴1+c=-1,∴c=-2,∴f(x)=x4-2.3.设函数f(x)=xm+ax的导数为f′(x)=2x+1,则数列{}(n∈N*)的前n项和是( )A.B.C.D.[答案] A[解析] ∵f(x)=xm+ax的导数为f′(x)=2x+1,∴m=2,a=1,∴f(x)=x2+x,即f(n)=n2+n=n(n+1),∴数列{}(n∈N*)的前n项和为:Sn=+
8、++…+=++…+=1-=,故选A.4.二次函数y=f(x)的图象过原点,且它的导函数y=f′(x)的图象是过第一、二、三象限的一条直线,则函数y=f(x)的图象的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限[答案] C[解析] 由题意可设f(x)=ax2+bx,f′(x)=2ax+b,由于f′(x)的图象是过第一、二、三象限的一条直线,故2a>0,b>0,则f(x)=a2-,顶点在第三象限,故选C.5.函数y=(2+x3)2的导数为( )A.6x5+12x2B.4+2x3C.2(2+x3)2D.2(2+x3)·3x[答案]
9、 A[解析] ∵y=(2+x3)2=4+4x3+x6,∴y′=6x5+12x2.6.若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1
此文档下载收益归作者所有