欢迎来到天天文库
浏览记录
ID:51626490
大小:900.36 KB
页数:24页
时间:2020-03-26
《平面与平面垂直的性质定理.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.3.4平面与平面垂直的性质复习回顾:(1)利用定义[作出二面角的平面角,证明平面角是直角](2)利用判定定理[线面垂直 面面垂直]AB线面垂直面面垂直线线垂直面面垂直的判定(1)如果平面α与平面β互相垂直,直线l在平面α内,那么直线l与平面β的位置关系有哪几种可能?llαβ思考αβαβlαβEF思考2如图,长方体中,α⊥β,(1)α里的直线都和β垂直吗?(2)什么情况下α里的直线和β垂直?与AD垂直不一定思考3垂足为B,那么直线AB与平面β的位置关系如何?为什么?αβABDCE垂直平面与平面垂直的性质定理符号表示:DCAB两个平面垂直,则一个平
2、面内垂直于交线的直线与另一个平面垂直.(线是一个平面内垂直于两平面交线的一条直线)面面垂直线面垂直作用:①它能判定线面垂直.②它能在一个平面内作与这个平面垂直的垂线.关键点:①线在平面内.②线垂直于交线.DCAB思考4设平面⊥平面,点P在平面内,过点P作平面的垂线a,直线a与平面具有什么位置关系?aa直线a在平面内βαPβαPαβAbalB垂直αβAbal分析:寻找平面α内与a平行的直线.解:在α内作垂直于交线的直线b,∵∴∵∴a∥b.又∵∴a∥α.即直线a与平面α平行.结论:垂直于同一平面的直线和平面平行().αβAbal分析:作出图形.abαβlγmn
3、abαβlγnmA(法二)(法一)在α内作直线a⊥n证法1:设在β内作直线b⊥mαβlγabmn在γ内过A点作直线a⊥n,证法2:设在γ内过A点作直线b⊥m,同理在γ内任取一点A(不在m,n上),abαβlγnmA如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面.结论αβγl判断线面垂直的两种方法:①线线垂直→线面垂直;②面面垂直→线面垂直.如图:例2.S为三角形ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC。求证:AB⊥BC。SCBAD证明:过A点作AD⊥SB于D点.∵平面SAB⊥平面SBC,∴AD⊥平面SBC,∴A
4、D⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.AD∩SA=A∴BC⊥平面SAB.∴BC⊥AB.3.如图,平面AED⊥平面ABCD,△AED是等边三角形,四边形ABCD是矩形,(1)求证:EA⊥CDMDECAB(2)若AD=1,AB=,求EC与平面ABCD所成的角。(2012·北京模拟)如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.(1)求证:BM∥平面ADEF;(2)求证:平面BDE⊥平面BEC.【证明】(1)取DE中点N,连接MN,AN.在△EDC中,M,N分别为EC,ED的中点,
5、所以MN∥CD,且MN=CD.由已知AB∥CD,AB=CD,所以MN∥AB,且MN=AB,所以四边形ABMN为平行四边形.所以BM∥AN.又因为AN平面ADEF,且BM平面ADEF,所以BM∥平面ADEF.(2)因为四边形ADEF为正方形,所以ED⊥AD,又因为平面ADEF⊥平面ABCD,且平面ADEF∩平面ABCD=AD.又因为ED平面ADEF,所以ED⊥平面ABCD.所以ED⊥BC.在直角梯形ABCD中,AB=AD=2,CD=4,可得BC=,在△BCD中,BD=BC=,CD=4,所以BC⊥BD,BD∩ED=D,所以BC⊥平面BDE,又因为BC平面BCE
6、,所以平面BDE⊥平面BEC.[总结提炼]☆已知面面垂直易找面的垂线,且在某一个平面内☆解题过程中应注意充分领悟、应用☆证明面面垂直要从寻找面的垂线入手☆理解面面垂直的判定与性质都要依赖面面垂直的定义☆定义面面垂直是在建立在二面角的定义的基础上的线面垂直面面垂直线线垂直面面垂直线面垂直线线垂直αβaAB线线垂直线面垂直线线平行面面平行面面垂直垂直、平行关系小结2.面面垂直的性质推论:1.平面与平面垂直的性质定理:面面垂直线面垂直αβγlαβAbalβαPaa∥αDCAB设平面⊥平面,点P在平面内,过点P作平面的垂线a,直线a与平面具有什么位置关系?垂直于同
7、一平面的直线和平面平行().如果两个相交平面都垂直于另一个平面,那么这两个平面的交线垂直于这个平面.
此文档下载收益归作者所有