欢迎来到天天文库
浏览记录
ID:51485980
大小:273.00 KB
页数:8页
时间:2020-03-25
《等离子显示器件工作原理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、显示技术第一·弹——等离子显示器件工作原理等离子体显示器(PDP)是继液晶显示器(LCD)之后的最新显示技术之一。这种显示器能够用作适应数字化时代的各种多媒体显示器,适用于制造大屏幕和薄型彩色电视机等,有着广阔的应用前景。等离子体显示器具有体积小、重量轻、无X射线辐射的特点,由于各个发光单元的结构完全相同,因此不会出现CRT显像管常见的图像几何畸变。等离子体显示器屏幕亮度非常均匀,没有亮区和暗区,不像显像管的亮度--屏幕中心比四周亮度要高一些,而且,等离子体显示器不会受磁场的影响,具有更好的环境适应能力
2、。等离子体显示器屏幕也不存在聚焦的问题,因此,完全消除了CRT显像管某些区域聚焦不良或使用时间过长开始散焦的毛病;不会产生CRT显像管的色彩漂移现象,而表面平直也使大屏幕边角处的失真和色纯度变化得到彻底改善。同时,其高亮度、大视角、全彩色和高对比度,意味着等离子体显示器图像更加清晰,色彩更加鲜艳,感受更加舒适,效果更加理想,令传统显示设备自愧不如。与LCD液晶显示器相比,等离子体显示器有亮度高、色彩还原性好、灰度丰富、对快速变化的画面响应速度快等优点。由于屏幕亮度很高,因此可以在明亮的环境下使用。另外,
3、等离子体显示器视野开阔,视角宽广(高达160度),能提供格外亮丽、均匀平滑的画面和前所未有的更大观赏角度。下面我们来介绍一下等离子体显示器件的工作原理。一、等离子体放电简介等离子体是物质存在的第四种形态。当气体被加热到足够高的温度,或受到高能带电粒子轰击,中性气体原子将被电离,空间中形成大量的电子和离子,但总体上又保持电中性。等离子体在我们日常生活中的自然存在很少,但实际上它又无处不在。远到宇宙天体,近到大气中的电离层,又如生活中常用的日光灯,都充满了等离子体。图1为日光灯的原理图。1.jpg(43.3
4、6KB)2010-7-2815:35若在图1中的低气压放电管中升高电压V,同时测量放电电流I,将得到图2所示的高度非线性电压-电流曲线。2.JPG(39.62KB)2010-7-2815:36在曲线上A、B间的区域是本底电离区,不断升高电压就描出一个由宇宙线和其他形式的电离本底辐射所产生的越来越多的单个离子和电子的电流。在B和C间的饱和区,由本底辐射所产生的所有离子和电子从放电区中逸出,电子并不具有产生新电离的足够能量。从C到E的区为汤生区,放电管中的电子从电场获得足够的能量,可以电离一些本底中性气体,
5、在电压增高时导致电流非常迅速地指数上升。在D和E间将发生单极电晕放电,这是由于在尖端、尖端边缘或粗糙的电极表面的局部电场集中而引起的;这些强的局部电场超过了周围中性气体的击穿强度。当电压增加至E点的电压Vb时,发生电击穿。在伏-安特性上,A和E之间的区域被称为暗放电区,因为除了电晕放电和电火花击穿外,放电是肉眼看不到的。一旦在E点发生电击穿,放电转变为辉光放电,电流足够高,激发的中性气体数量足够多,放电肉眼可见。经从E点到F点跃变后,进入正常辉光放电区域,在放电电流变化几个数量级的范围内,放电电压几乎不
6、变。当电流从F增加到G,阴极被等离子体占据的部分增加,直到G点,整个表面被覆盖。从G到H,放电进入异常辉光放电区。若放电从曲线的G点向左移动,则在伏-安特性曲线上有一滞后,正常辉光放电方式将被维持到F',此处电流和电流密度比F点低很多,然后跃迁返回汤生区。等离子体显示屏及日光灯都工作于正常辉光放电区。当电源电压增加到Vb而内阻又不大时,气体将会被击穿,放电管中产生大量的高能量电子,并碰撞激发中性气体原子发出可见光或紫外光。气体一旦被击穿,就能以一较低的电压Vs将放电维持在辉光放电区,这一特性对等离子体显
7、示器件具有重要意义。二、PDP简介PDP分为直流(DC)驱动型和交流(AC)驱动型两种不同方式。直流型电极与放电气体直接接触,紫外线的产生效率高,但显示屏的结构比较复杂,在目前商用彩色PDP中已很少用。交流型的电极表面涂敷一层介质层,使其结构类似于一个电容器。交流型PDP又分对向放电和表面放电两种,对向放电型PDP的结构类似于图1,两电极分别制作在前后玻板上,等离子体放电在整个放电室中进行,优点是放电空间利用充分且比三电极表面放电型PDP减少1/3电极;缺点是荧光粉直接暴露在放电等离子体中,容易退化,须
8、采用特别的保护措施。目前的主流彩色PDP为三电极表面交流放电型。1.结构表面放电型AC-PDP的结构如图3所示。扫描电极Y和维持电极Z位于放电介质的同一侧,使放电在前表面进行,减少了带电粒子对荧光粉的轰击。放电电极与放电介质间由绝缘介质层隔开,使得壁电荷可以在电极表面聚集。壁电荷形成的电场与电极电场反向,随壁电荷的积累空间电场逐步减弱,当空间电场减小到低于维持电压Vs(见图2)时,直流放电终止,但该放电单元处于交流放电的激活态,当Z、Y电极
此文档下载收益归作者所有