资源描述:
《普通高等学校招生全国统一考试数学1985年-文科数学.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、1985年全国普通高等学校招生统一考试(文史类)数学一、本题每个小题都给出代号为A,B,C,D的四个结论,其中只有一个结论是正确的,把正确结论的代号写在题后的括号内.(1)设正方体ABCD—A′B′C′D′的棱长为a,那么三棱锥A′—ABD的体积是(A)必要条件 (B)充分条件(C)充分必要条件 (D)既不充分又不必要的条件(3)设集合X={0,1,2,4,5,7},Y={1,3,6,8,9},Z={3,7,8},那么集合(x∩
2、Y)∪Z是(A){0,1,2,6,8} (B){3,7,8}(C){1,3,7,8} (D){1,3,6,7,8}以π为周期的偶函数?(A)y=x2 (x∈R) (B)y=│sinx│ (x∈R)(C)y=cos2x (x∈R) (D)y=esin2x
3、 (x∈R)-10-(5)用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有(A)96个 (B)78个(C)72个 (D)64个二、只要求直接写出结果.(2)求圆锥曲线3x2-y2+6x+2y-1=0的离心率.(3)求函数y=-x2+4x-2在区间[0,3]上的最大值和最小值.(4)设(3x-1)6=a6x6+a5x5+a4
4、x4+a3x3+a2x2+a1x+a0,求a6+a5+a4+a3+a2+a1+a0的值.(5)设i是虚数单位,求(1+i)6的值.三、设 S1=12, S2=12+22+12,S3=12+22+32+22+12,…, Sn=12+22+32+…+n2+…+32+22+12,….用数学归纳法证明:公式对所有的正整数n都成立.四、证明三角恒等式-10-五、(1)解方程lg(3-x)-lg(3+x)=lg(1-x)-lg(2x+1).(2
5、)解不等式六、设三棱锥V-ABC的三个侧面与底面所成的二面角都是β,它的高是h.求这个三棱锥底面的内切圆半径.七、已知一个圆C:x2+y2+4x-12y+39=0和一条直线l:3x-4y+5=0.求圆C关于直线l对称的圆的方程.-10- -10- 1985年全国普通高等学校招生统一考试(文史卷)数学参考答案一、本题考查基本概念和基本运算.(1)D; (2)A; (3)C; (4)B; (5)B.二、本题考查基础知识和基本运算,
6、只需直接写出结果.(1){x│-2≤x<1}∪{x│17、,(A)式对所有的正整数n都成立,即证得四、本题考查三角公式和证明三角恒等式的能力.证法一:左边=2sin4x+3sin2xcos2x+5cos4x-(4cos3x-3cosx)cosx=2sin4x+3sin2xcos2x+cos4x+3cos2x=(2sin2x+cos2x)(sin2x+cos2x)+3cos2x=2sin2x+cos2x+3cos2x=2+2cos2x=右边.证法二:=右边.五、本题考查对数方程、无理不等式的解法以及分析问题的能力.-10-(1)解法一:由原对数方程得于是解这个方程,得到
8、x1=0,x2=7.检验:把x=0代入原方程,左边=0=右边;故x=0是原方程的根.把x=7代入原方程,由于3-x<0,1-x<0,它们的对数无意义,故x=7不是原方程的根,应舍去.因此,原对数方程的根是x=0.对原方程变形,同解法一,得x1=0, x2=7.2x+5>x2+2x+1,x2<4,即-2