锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律.pdf

锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律.pdf

ID:51233699

大小:1.36 MB

页数:3页

时间:2020-03-22

锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律.pdf_第1页
锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律.pdf_第2页
锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律.pdf_第3页
资源描述:

《锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、建材世界2014年第35卷S1doi:10.3963/j.issn.1674-6066.2014.S1.034锚杆剪滞-脱粘模型下荷载传递机理及应力分布规律邱艳军,文畅平(中南林业科技大学土木工程与力学学院,长沙410004)摘要:现行有关岩土锚杆设计规范和技术规程均采用剪应力沿锚杆长度方向不变假设进行设计,而大量的现场和模型试验已证实锚杆应力分布为非线性。为了得到土质锚杆锚固段的应力分布函数,该文通过假定锚杆锚固体与周围岩土体之间相互作用满足剪滞-脱粘模型,运用荷载传递法,推导出了锚固界面沿杆长方向的

2、剪应力分布的应力函数和土体工作状态的判断公式。通过实例分析和对比锚杆与周围土体相互作用的其它模型,锚杆轴应力分布比较吻合。关键词:锚杆;剪滞-脱粘模型;应力分布ShearSlipModeltoAnalyzeLoadTransferMechanismandStressDistributionontheBoltQIUYan-jun,WENChang-ping(CollegeofCivilEngineeringandMechanics,CentralSouthUniversityofForestry&Tech

3、nology,Changsha410004,China)Abstract:Thestressdistributionofboltisusuallyregardedasuniformintheexistingnormsandengineeringde-sign,whilealargenumberofon-siteandmodeltestshaveprovenboltstressdistributionisnon-uniformity.Assumetheforcebetweentheboltinterfac

4、eandrock-soilbodysuittotheshearslipmodel.Thefeaturesofthestressdistribu-tionboltswereanalyzedbyloadtransfermethod.Throughanalysisandcomparedwithothermodelsofboltandsur-roundingsoilinteraction,theresultswereconsistenKeywords:bolt;shear-slipmodel;stressdis

5、tribution[1]在岩土工程锚固技术研究中,常用的锚固手段是锚杆和锚索。锚杆锚固作为一项重要的支护和加固技术,正广泛地应用于地质灾害防护及加固等多个领域,对提高岩土体的整体性、承载力及稳定性等方面优[2]势已经在大量的工程实践中得到证实。边坡岩(土)体锚固中最基本的性能是受力特性,包括剪应力分布特性和轴力分布特性等内容,其影响着边坡岩体锚固的长期性能和耐久性以及边坡工程的安全和稳定等方面。正确地设计和应用边坡岩体锚固技术,必须首先对边岩体锚固的受力特性有客观而深入地认识,并在此基础上研究边坡岩体锚

6、固的长期性能和耐久性,进行边坡岩体锚固的优化设计和施工等工程应用。通过大量的试验研究发现,锚杆抗拔作用的发挥是由于锚固体和周围岩土体发生相对移动或有相对移[3][4]动的趋势而引起。预应力锚杆(索)在荷载作用下荷载传递的路径为:锚杆→浆体→周围岩土体。现行的有关设计规范和技术标准均采用剪应力均匀分布假定进行设计,但这种设计方法并不符合锚杆受力的实[5]际情况。最早的锚杆摩阻力试验是在上世纪70年代,OSTERMATER在研究具有不同锚固长度锚杆所做的现场试验中发现,锚固力随锚固长度的变化并不是线性变化,

7、当锚固长度达到一定值后,增加锚固长度[6-8]对锚杆承载力的提高是有限度的,于是众多学者提出了锚杆与周围土体相互作用的各种模型,但都难以达成共识。1锚杆应力剪滞-脱粘模型1.1剪滞-脱粘模型的荷载传递模型[9]为了获得荷载沿锚杆传递的方程解,有时将τ-z曲线简化成用几段折线来表示。一方面是由于有些91建材世界2014年第35卷S1实测摩阻力与锚固体位移之间的关系的确呈现出比较明显的折线关系,另一方面是用折线近似代替曲线也能取得较好的计算精度,但在具体计算过程中,需要做一些假设,包括剪应力对锚固体位移的刚

8、度沿整个锚固深度范围内保持不变;屈服阶段,锚固体与周围岩土体之间的剪应力沿深度不变等。剪滞-脱粘模型下锚固体与周围土体之间的位移-应力关系如图1所示。τ=k1ww≤wu1üïïτ=τu+(w-wu1)wu1wu2þ式中,k1、k2分别为弹性、塑性阶段剪力传递系数;wu1为弹性阶段锚固体与周围土体之间剪切位移的最大值;wu2为塑性阶段锚固体与周围土体之间剪切位移的最大值;τu为土体弹性阶段锚固体与周围土体

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。