资源描述:
《现代设备维修技术-纳米减摩与自修复技术.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、纳米减摩与自修复技术——纳米铜添加剂第八组组员:邱朝伟,游广文,李石祥,白兆明,李蒙蒙,覃玉香、杨甜、杨超、王丽、陈海峰、黄建、李杭谕提纲42传统的减摩添加剂1润滑油纳米添加剂的减摩自修复行为35通过实验进行检验纳米减摩自修复添加剂技术的作用机理纳米减摩自修复添加剂技术应用的原因纳米减摩自修复添加剂技术应用的原因摩擦磨损是普遍存在的自然现象,磨损是材料与设备失效的三种最主要形式之一,尽管润滑是降低摩擦、减小磨损的最有效技术,但磨损仍不可避免。磨损一般起始于早期的轻度表面微损伤,而后发展成为严重的表面损伤。因此,维修工作者一直在努力
2、寻找行之有效的方法,避免早期磨损表面的轻度微损伤或防止轻度微损伤转变为严重的表面损伤。断裂、腐蚀纳米减摩自修复添加剂技术应用的原因表面微损伤原位动态自修复技术是近年发展的一种新型技术,与传统的对失效部件进行静态修复模式有着本质的区别,它是通过对磨损表面微损伤的不拆卸原位动态修复,达到预防或抑制部件的失效的目的。该技术已成为未来维修的主要发展方向之一,也是维修领域的创新性前沿研究内容,特别是纳米材料的发展也为研制先进的表面微损伤原位动态自修复材料和技术提供了新的途径。传统的减摩添加剂传统的减摩添加剂主要有两大类:一类是化学(活性)减摩
3、添加剂,该类添加剂大部分具有极性或含有活性元素的油溶性有机化合物。该类添加剂在摩擦过程中,与摩擦表面发生摩擦化学反应,生成摩擦化学保护膜,从而起到抗磨减摩作用。该类添加剂的缺点是消耗性和耐高温性能较差。传统的减摩添加剂另一类是机械减摩,这类添加剂是非油溶性的悬浮于油中的固体微粒。该类添加剂能在摩擦过程中,沉积并填平凹凸不平的磨损表面,阻碍部件的直接接触而起到减少摩擦磨损作用。该类添加剂的主要缺点是摩擦系数较高,固体微粒的分散性能差。维修表面工程研究中心在上述减摩添加剂研究的基础上,利用先进的纳米技术,研制了纳米减摩与自修复润滑油添加
4、剂。传统的减摩添加剂减摩与自修复是指在摩擦过程中,由于润滑介质及环境的摩擦物理、化学作用,对磨损表面具有一定补偿的“修复”现象。减摩与自修复型添加剂的作用机理与常见的活性添加剂不同,它不是以牺牲添加剂和表面物质为条件,而是在摩擦条件下,在摩擦表面上沉积、结晶、铺展成膜,使磨损得到一定补偿,具有一定减摩与自修复作用。纳米减摩自修复添加剂技术的作用机理目前,自修复型添加剂的作用机理大致可分为两类,一类是铺展成膜理论:添加剂分子与金属表面具有亲和作用,在摩擦过程中表现出极性,并扩散到摩擦微观表层,形成一层具有减摩与自修复作用的铺展膜;另一
5、类是共晶成膜理论:即在边界、混合润滑状态下,局部的摩擦高温促使添加剂微粒与磨损微粒化合成微小的共晶微球,在表面形成具有滚动性润滑功能的保护层膜,填充摩擦表面微观沟谷,改善摩擦表面的润滑性能,以降低摩擦阻力,延长使用寿命纳米减摩自修复添加剂技术的作用机理减摩、耐磨、自修复问题是精密摩擦副需解决的关键问题,润滑油添加剂技术是延长零件摩擦副寿命的重要手段,也是国外表面工程的重要发展方向。纳米减摩自修复添加剂技术是一项新型的原位自修复技术。当含有纳米颗粒(如铜粒)的复合添加剂被加入润滑油后,纳米颗粒随润滑油分散于各个摩擦副接触表面,在一定温
6、度、压力、摩擦力作用下,摩擦副表面产生剧烈摩擦和塑性变形,添加剂中的纳米颗粒就会在摩擦表面沉积,并与摩擦表面作用。纳米减摩自修复添加剂技术的作用机理减摩、耐磨、自修复问题是精密摩擦副需解决的关键问题,润滑油添加剂技术是延长零件摩擦副寿命的重要手段,也是国外表面工程的重要发展方向。纳米减摩自修复添加剂技术是一项新型的原位自修复技术。当含有纳米颗粒(如铜粒)的复合添加剂被加入润滑油后,纳米颗粒随润滑油分散于各个摩擦副接触表面,在一定温度、压力、摩擦力作用下,摩擦副表面产生剧烈摩擦和塑性变形,添加剂中的纳米颗粒就会在摩擦表面沉积,并与摩擦
7、表面作用。润滑油纳米添加剂的减摩自修复行为润滑油纳米添加剂的减摩自修复行为是指:润滑油中加入纳米添加剂,能够使摩擦副在运动过程中,通过摩擦化学反应,在摩擦表面形成一层具有抗磨减摩作用的液态或固态保护膜,从而使摩擦副在运动过程中得到修复。润滑油纳米减摩自修复添加剂的种类主要有:纳米层状无机物、纳米硼酸盐、纳米软金属及纳米金属氧化物、氢氧化物等,其中,软金属纳米铜在润滑油中具有良好的摩擦学性能和自修复性能。实验检验--实验分析1.1纳米铜的制备采用KBH4液相还原铜盐的方法制备纳米铜。称取36gKOH溶解于蒸馏水中形成KOH溶液,称取4
8、gKBH4溶于KOH溶液制成KBH4的碱溶液。再称取30g燥干的CuSO4,将其溶解于蒸馏水中形成CuSO4溶液,然后称取8gEDTA(EDTA是一种重要的络合剂)溶于CuSO4溶液中形成络合液。在电动搅拌器的强力搅拌条件下,将KBH