欢迎来到天天文库
浏览记录
ID:51117341
大小:11.28 MB
页数:98页
时间:2020-03-18
《人工智能现状与未来.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、人工智能的现状与未来网经科技刘继明人工智能概述第一节深度学习与智能围棋第二节人工智能3.0第三节目录content人工智能的新革命第一节人工智能简述深度学习算法知识图谱人工智能将引领人类第四次工业革命–智能化时间18世纪末工业1.0创造了机器工厂的“蒸汽时代”20世纪初电力广泛应用蒸汽机信息物联系统1970年代初今天工业2.0将人类带入分工明确、大批量生产的流水线模式和“电气时代”工业3.0应用电子信息技术,进一步提高生产自动化水平自动化、信息化工业4.0开始应用信息物理融合系统(CPS)复杂度悄悄来临互联网时代正在终结人工智能机器人交通工具(即无人机、无人驾驶等)VR(虚
2、拟现实)AI将催生“无用阶层”吗?人工/脑力劳动:翻译、记者...人工/体力劳动:保安、保姆...什么是人工智能(AI)?全面实施战略性新兴产业发展规划,加快人工智能等技术的研发和转化,做大做强产业集群把发展智能制造作为主攻方向,推进国家智能制造示范区、制造业创新中心建设人工智能:国家战略(2017年政府工作报告)人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器
3、人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。什么是人工智能?人工智能有那些类型?弱人工智能,包含基础的、特定场景下角色型的任务,如Siri等聊天机器人和AlphaGo等下棋机器人;通用人工智能,包含人类水平的任务,涉及机器的持续学习;强人工智能,指比人类更聪明的机器;195619741980198719932006AI的诞生1956达特矛斯会议,“人工智能”正式诞生孕育期电子计算机机器翻译与NLP图灵测试计算机下棋早期神经网络搜索式推理聊天机器人乐观思潮所有的AI程
4、序都只是“玩具”运算能力计算复杂性常识与推理专家系统知识工程五代机神经网络重生未达预期削减投入摩尔定律统计机器学习AI广泛应用大数据计算能力应用增多深度学习人工智能2016人工智能发展历程手机中的AI人工智能相关技术刚刚越过曲线高峰(处于狂热期),是推动透明化身临其境体验技术发展的主要动力涉及透明化身临其境体验的人本技术(如智能工作空间、互联家庭、增强现实、虚拟现实、脑机接口)是拉动另外两大趋势的前沿技术数字平台在曲线上处于快速上升期,其中的量子计算和区块链将在今后5—10年带来变革性的影响AI处于什么阶段?AIRoadmap国人为什么要关注AI?为什么人类能成为地球的主宰
5、?基因:人和大猩猩的基因,有98.4%都是完全一样的,只有1.6%有区别“符号语言”(口头语言和书面文字):传递、保存、共享知识“集体知识”:人类的大脑可以相互共享信息,交换知识人类个体比其他动物没有多大优势,掌握了符号语言,人类社会的结构发生了突变,有了一个连接在一起的集体大脑。这种物种之间相互关联、相互作用的方式,才是我们和其他物种的真正区别脑容量:历史上的“尼安德特人”和我们的祖先脑容量是一样的。但后来尼安德特人就没留下来,只有我们这一支留下来了《时间地图:大历史导论》知识和创新是推动人类发展的动力AI学科结构AI的几大门派符号学派联结学派行为学派神经网络知识表示机器
6、人模拟人的心智模拟脑的结构模拟人的行为聪明的AI有学识的AI深度学习知识图谱感知识别判断思考语言推理贝叶斯学派进化学派类推学派人工智能产业生态的三层基本架构基础资源层:主要是计算平台和数据中心,属于计算智能;技术层:通过机器学习建模,开发面向不同领域的算法和技术,包含感知智能和认知智能;应用层:主要实现人工智能在不同场景下的应用。基础资源支撑AI生态逐步形成:基础资源+技术+应用人工智能系统的技术架构智能终端智能云平台人工智能的新革命第一节人工智能简述深度学习算法知识图谱推理期知识期机器学习期人工智能的三个研究阶段1950s1970s1980s基于符号知识表示通过演绎推理技
7、术基于符号知识表示通过获取和利用领域知识建立专家系统神经网络第二个高潮NP(non-deterministicpolynomial-time)难题中获重大进展助力大量现实问题神经网络第一个高潮期神经网络以深度学习之名再次崛起大幅提升感知智能准确率201790s中期统计学习登场并占据主流,支持向量机、核方法为代表性技术提出支持向量、VC维等概念统计学的研究成果经由机器学习研究,形成有效的学习算法联结学派对大脑进行逆向分析灵感来自于神经科学和物理学产生的是“黑箱”模型神经网络可归置此类符号学派将学习看作逆向演绎并从哲学
此文档下载收益归作者所有