欢迎来到天天文库
浏览记录
ID:51091534
大小:5.34 MB
页数:88页
时间:2020-03-18
《《TRIZ创新思维》PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章思维方法如何克服思维惯性?传统创新与TRIZ创新结果的比较、解决办法思维定势发明问题12345678传统创新应用发散思维“试错法”搜索发明问题解决办法,造成人力、物力的巨大浪费查尔斯.固特异用毕生的精力只解决了一个难题。传统创新(发散)与TRIZ创新(收敛)的结果比较问题解答技术系统进化规律或理想化目标科学效应、发明原则、标准解法基于TRIZ的创新:提供创新思维的效率;走出“试错法”的绝境。引导解决问题的方向,提高解题效率。培养有序的思维过程辨识现有问题转换为标准问题研究提示方案运用TRIZ工具类比思考最终解答工具创新的思维创新的规律S曲线能量传递法则协调性法则动态性法则子系统不均衡进
2、化向超系统进化向微观型进化提高理想度法则……创新的方法物理矛盾分离方法物场模型标准解法知识库技术矛盾创新原理……小人法金鱼法STC算子九屏幕法IFR资源术语术语矛盾理想度……效应功能技术系统……完备性法则功能分析根本原因分析算法ARIZ……自己的算法九步法TRIZ的理论体系工具创新的思维创新的规律创新的方法小人法金鱼法STC算子九屏幕法IFR术语算法……TRIZ的理论体系术语九屏幕法IFR法小人法金鱼法STC算子TRIZ中的创新思维方法系统思维对情境进行系统地思考,不仅考虑当前,还要考虑过去和未来;不仅考虑本系统,还要考虑相关的其他系统和系统内部。系统地思考问题的产生与发展。系统地、动态地、
3、联系地看待事物。九屏幕法分析系统地分析资源,从资源的视角探究解决问题的可能性,选取最佳方案解决问题。九屏幕法的含义九屏幕法是系统思维的一种方法九屏幕法当前系统的过去超系统的过去超系统的未来超系统当前系统的未来当前系统子系统的未来子系统子系统的过去九屏幕法12技术系统由多个子系统组成的总体,并通过子系统间的相互作用实现一定的功能,人们常简称它为系统。当前系统正在发生当前问题的系统(或是指当前正在普遍应用的系统)超系统技术系统之外的高层次系统子系统是构成技术系统之内的低层次系统,任何技术系统都包含一个或多个子系统。在底层的子系统在上级系统的约束下起作用,在底层的子系统一旦发改变,就会引起高级系
4、统的改变。九屏幕法、超系统—交通工具,包括有道路、地图等所构成;汽车的子系统—剎车系统、动力系统、转向系统等。超系统—系统—子系统是一个彼此相对的观念,例如剎车系统也可再细分下去,但是一般在分析时,是以问题的上层与下层系统为主要的思考方式,并不层层展开。九屏幕法实例:汽车系统进化的屏幕过去超系统柏油路超系统交通系统未来超系统智能化交通系统过去早期内燃机四轮车当前系统汽车系统未来混合动力车未来子系统无充气轮辐型轮胎子系统低压轮胎过去子系统内/外轮胎超系统系统子系统Step1:画出三横三纵的表格,将要研究的技术系统填入格1Step2:考虑技术系统的子系统和超系统,分别填入格2和3Step3:考虑
5、技术系统的过去和未来,分别填入格4和5Step4:考虑超系统和子系统的过去和未来,填入剩下格中Step5:针对每个格子,考虑可用的各种类型资源Step6:利用资源规律,选择解决技术问题超系统系统子系统过去现在未来九屏幕法的步骤反系统的过去超反系统的过去超反系统的未来超反系统反系统的未来反系统子反系统的未来子反系统子反系统的过去当前系统的过去超系统的过去超系统的未来超系统当前系统的未来当前系统子系统的未来子系统子系统的过去九屏幕法的进化铅笔及其反系统面包屑单体橡皮万能消字橡皮组合橡皮软橡皮擦橡皮擦液体橡皮擦乳胶乳胶汁石墨条单体铅笔多芯自动铅笔组合铅笔带橡皮的铅笔铅笔液体铅笔芯铅笔芯石墨粉早期内
6、燃机四轮车柏油路智能化交通系统交通系统混合动力汽车汽车无充气轮轴型轮胎无内胎低压轮胎内、外胎轮胎九屏幕法的实例1汽车的子系统——发动机汽车的子系统——轮胎当前系统——汽车汽车的超系统——交通系统汽车的子系统、当前系统和超系统九屏幕法的实例1从棕榈树顶部割树汁分析各个场景的资源九屏幕法的实例2—割棕榈汁孟加拉国约有1300万棕榈树,一颗棕榈树每季可产240升树汁用来制造棕榈糖,这是当地居民千百年来的重要收入来源?但是在获取树汁时必须从树冠向下割槽,树干高20多米,怎么办?在超系统中寻找方案九屏幕法的实例2—割棕榈汁在系统的过去寻找方案九屏幕法的实例2—割棕榈汁九屏幕法1、有助于多角度的看待问题
7、;2、突破原有思维的惯性;3、从时间和系统两个维度看问题,根据现有资源,确定问题解决方法;九屏幕法小结九屏幕法IFR法小人法金鱼法STC算子TRIZ中的创新思维方法TRIZ中的理想化在问题解决之初,先抛开各种限制条件。并以取得最终理想结果作为终极追求目标。针对问题情境,设立各种理想模型,即最优模型结构来分析问题。IFR—IdealFinalResultTRIZ中的理想化模型理想系统理想过程理想资源理想方法理想
此文档下载收益归作者所有