欢迎来到天天文库
浏览记录
ID:51049608
大小:252.95 KB
页数:17页
时间:2020-03-08
《模式识别与机器学习.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、TechnicalReportNo.9815,DepartmentofStatistics,UniversityofTorontoMarkovChainSamplingMethodsforDirichletProcessMixtureModelsRadfordM.NealDepartmentofStatisticsandDepartmentofComputerScienceUniversityofToronto,Toronto,Ontario,Canadahttp://www.cs.utoronto.ca/radford/radford@
2、stat.utoronto.ca1September1998Abstract.MarkovchainmethodsforsamplingfromtheposteriordistributionofaDirichletprocessmixturemodelarereviewed,andtwonewclassesofmethodsarepre-sented.OnenewapproachistomakeMetropolis-Hastingsupdatesoftheindicatorsspecifyingwhichmixturecomponenti
3、sassociatedwitheachobservation,perhapssup-plementedwithapartialformofGibbssampling.TheothernewapproachextendsGibbssamplingfortheseindicatorsbyusingasetofauxiliaryparameters.Thesemeth-odsaresimpletoimplementandaremoreecientthanpreviouswaysofhandlinggeneralDirichletprocessm
4、ixturemodelswithnon-conjugatepriors.1IntroductionModelingadistributionasamixtureofsimplerdistributionsisusefulbothasanon-parametricdensityestimationmethodandasawayofidentifyinglatentclassesthatcanexplainthedependenciesobservedbetweenvariables.Mixtureswithacountablyinniten
5、umberofcomponentscanreasonablybehandledinaBayesianframework,byemployingapriordistributionformixingproportions,suchasaDirichletprocess,thatleadstoafewofthesecomponentsdominating.Useofcountablyinnitemixturesby-passestheneedtodeterminethecorrect"numberofcomponentsinanitemi
6、xturemodel,ataskwhichisfraughtwithtechnicaldiculties.Inmanycontexts,acountablyinnitemixtureisalsoamorerealisticmodelthanamixturewithasmallnumberofcomponents.UseofDirichletprocessmixturemodelshasbecomecomputationallyfeasiblewiththedevelopmentofMarkovchainmethodsforsamplin
7、gfromtheposteriordistributionoftheparametersofthecomponentdistributionsand/oroftheassociationsofmixturecomponentswithobservations.MethodsbasedonGibbssamplingcaneasilybeimple-mentedformodelsbasedonconjugatepriordistributions,butwhennon-conjugatepriorsareused,asisappropriate
8、inmanycontexts,straightforwardGibbssamplingrequiresthatanoftendicultnumericalintegration
此文档下载收益归作者所有