模式识别与机器学习.pdf

模式识别与机器学习.pdf

ID:51049608

大小:252.95 KB

页数:17页

时间:2020-03-08

模式识别与机器学习.pdf_第1页
模式识别与机器学习.pdf_第2页
模式识别与机器学习.pdf_第3页
模式识别与机器学习.pdf_第4页
模式识别与机器学习.pdf_第5页
资源描述:

《模式识别与机器学习.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、TechnicalReportNo.9815,DepartmentofStatistics,UniversityofTorontoMarkovChainSamplingMethodsforDirichletProcessMixtureModelsRadfordM.NealDepartmentofStatisticsandDepartmentofComputerScienceUniversityofToronto,Toronto,Ontario,Canadahttp://www.cs.utoronto.ca/radford/radford@

2、stat.utoronto.ca1September1998Abstract.MarkovchainmethodsforsamplingfromtheposteriordistributionofaDirichletprocessmixturemodelarereviewed,andtwonewclassesofmethodsarepre-sented.OnenewapproachistomakeMetropolis-Hastingsupdatesoftheindicatorsspecifyingwhichmixturecomponenti

3、sassociatedwitheachobservation,perhapssup-plementedwithapartialformofGibbssampling.TheothernewapproachextendsGibbssamplingfortheseindicatorsbyusingasetofauxiliaryparameters.Thesemeth-odsaresimpletoimplementandaremoreecientthanpreviouswaysofhandlinggeneralDirichletprocessm

4、ixturemodelswithnon-conjugatepriors.1IntroductionModelingadistributionasamixtureofsimplerdistributionsisusefulbothasanon-parametricdensityestimationmethodandasawayofidentifyinglatentclassesthatcanexplainthedependenciesobservedbetweenvariables.Mixtureswithacountablyin niten

5、umberofcomponentscanreasonablybehandledinaBayesianframework,byemployingapriordistributionformixingproportions,suchasaDirichletprocess,thatleadstoafewofthesecomponentsdominating.Useofcountablyin nitemixturesby-passestheneedtodeterminethecorrect"numberofcomponentsina nitemi

6、xturemodel,ataskwhichisfraughtwithtechnicaldiculties.Inmanycontexts,acountablyin nitemixtureisalsoamorerealisticmodelthanamixturewithasmallnumberofcomponents.UseofDirichletprocessmixturemodelshasbecomecomputationallyfeasiblewiththedevelopmentofMarkovchainmethodsforsamplin

7、gfromtheposteriordistributionoftheparametersofthecomponentdistributionsand/oroftheassociationsofmixturecomponentswithobservations.MethodsbasedonGibbssamplingcaneasilybeimple-mentedformodelsbasedonconjugatepriordistributions,butwhennon-conjugatepriorsareused,asisappropriate

8、inmanycontexts,straightforwardGibbssamplingrequiresthatanoftendicultnumericalintegration

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。