整数规划ppt课件 (3).ppt

整数规划ppt课件 (3).ppt

ID:50856256

大小:2.20 MB

页数:90页

时间:2020-03-15

整数规划ppt课件 (3).ppt_第1页
整数规划ppt课件 (3).ppt_第2页
整数规划ppt课件 (3).ppt_第3页
整数规划ppt课件 (3).ppt_第4页
整数规划ppt课件 (3).ppt_第5页
资源描述:

《整数规划ppt课件 (3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、整数规划(IntegerProgramming)1.整数规划的模型2.分支定界法3.割平面法4.0-1整数规划5.指派问题1(一)、整数规划问题实例例一、合理下料问题设用某型号的圆钢下零件A1,A2,…,Am的毛坯。在一根圆钢上下料的方式有B1,B2,…Bn种,每种下料方式可以得到各种零件的毛坯数以及每种零件的需要量,如表所示。问怎样安排下料方式,使得即满足需要,所用的原材料又最少?零件方个数式零件零件毛坯数一、整数规划的模型2设:xj表示用Bj(j=1.2…n)种方式下料根数模型:例二、某公司计划在m个地点建厂,可供选择的

2、地点有A1,A2…Am,他们的生产能力分别是a1,a2,…am(假设生产同一产品)。第i个工厂的建设费用为fi(i=1.2…m),又有n个地点B1,B2,…Bn需要销售这种产品,其销量分别为b1.b2…bn。从工厂运往销地的单位运费为Cij。试决定应在哪些地方建厂,即满足各地需要,又使总建设费用和总运输费用最省?3单销地厂址价生产能力建设费用销量4设:xij表示从工厂运往销地的运量(i=1.2…m、j=1.2…n),1在Ai建厂又设Yi=(i=1.2…m)0不在Ai建厂模型:5例三、机床分配问题设有m台同类机床,要加工n种零

3、件。已知各种零件的加工时间分别为a1,a2,…an,问如何分配,使各机床的总加工任务相等,或者说尽可能平衡。设:1分配第i台机床加工第j种零件;xij=(i=1.2…m,j=1.2…n)0相反。于是,第i台机床加工各种零件的总时间为:又由于一个零件只能在一台机床上加工,所以有6因此,求xij,使得7(二)、整数规划的数学模型一般形式依照决策变量取整要求的不同,整数规划可分为纯整数规划、全整数规划、混合整数规划、0-1整数规划。8纯整数规划:所有决策变量要求取非负整数(这时引进的松弛变量和剩余变量可以不要求取整数)。全整数规划

4、:除了所有决策变量要求取非负整数外,系数aij和常数bi也要求取整数(这时引进的松弛变量和剩余变量也必须是整数)。混合整数规划:只有一部分的决策变量要求取非负整数,另一部分可以取非负实数。0-1整数规划:所有决策变量只能取0或1两个整数。9(三)、整数规划与线性规划的关系从数学模型上看整数规划似乎是线性规划的一种特殊形式,求解只需在线性规划的基础上,通过舍入取整,寻求满足整数要求的解即可。但实际上两者却有很大的不同,通过舍入得到的解(整数)也不一定就是最优解,有时甚至不能保证所得倒的解是整数可行解。举例说明。10例:设整数规

5、划问题如下首先不考虑整数约束,得到线性规划问题(一般称为松弛问题)。11用解法求出最优解x1=3/2,x2=10/3且有Z=29/6现求整数解(最优解):如用“舍入取整法”可得到4个点即(1,3)(2,3)(1,4)(2,4)。显然,它们都不可能是整数规划的最优解。按整数规划约束条件,其可行解肯定在线性规划问题的可行域内且为整数点。故整数规划问题的可行解集是一个有限集,如图所示。x1x2⑴⑵33(3/2,10/3)图12因此,可将集合内的整数点一一找出,其最大目标函数的值为最优解,此法为完全枚举法。如上例:其中(2,2)(3

6、,1)点为最大值,Z=4。目前,常用的求解整数规划的方法有:分支定界法和割平面法;对于特别的0-1规划问题采用隐枚举法和匈牙利法。13(一)、基本思路考虑纯整数问题:整数问题的松弛问题:二、分枝定界法141、先不考虑整数约束,解(IP)的松弛问题(LP),可能得到以下情况之一:⑴.若(LP)没有可行解,则(IP)也没有可行解,停止计算。⑵.若(LP)有最优解,并符合(IP)的整数条件,则(LP)的最优解即为(IP)的最优解,停止计算。⑶.若(LP)有最优解,但不符合(IP)的整数条件,转入下一步。为讨论方便,设(LP)的最优

7、解为:152、定界:记(IP)的目标函数最优值为Z*,以Z(0)作为Z*的上界,记为=Z(0)。再用观察法找的一个整数可行解X′,并以其相应的目标函数值Z′作为Z*的下界,记为Z=Z′,也可以令Z=-∞,则有:Z≤Z*≤3、分枝:在(LP)的最优解X(0)中,任选一个不符合整数条件的变量,例如xr=(不为整数),以表示不超过的最大整数。构造两个约束条件xr≤和xr≥+116如此反复进行,直到得到Z=Z*=为止,即得最优解X*。将这两个约束条件分别加入问题(IP),形成两个子问题(IP1)和(IP2),再解这两个问题的松弛问题

8、(LP1)和(LP2)。4、修改上、下界:按照以下两点规则进行。⑴.在各分枝问题中,找出目标函数值最大者作为新的上界;⑵.从已符合整数条件的分枝中,找出目标函数值最大者作为新的下界。5、比较与剪枝:各分枝的目标函数值中,若有小于Z者,则剪掉此枝,表明此子问题已经探清,不必再分枝了;否则继续

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。