基本概念ppt课件.ppt

基本概念ppt课件.ppt

ID:50762120

大小:1.86 MB

页数:32页

时间:2020-03-14

基本概念ppt课件.ppt_第1页
基本概念ppt课件.ppt_第2页
基本概念ppt课件.ppt_第3页
基本概念ppt课件.ppt_第4页
基本概念ppt课件.ppt_第5页
资源描述:

《基本概念ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、推广第八章一元函数微分学多元函数微分学注意:善于类比,区别异同多元函数微分法及其应用1第八章第一节一、区域二、多元函数的概念三、多元函数的极限四、多元函数的连续性机动目录上页下页返回结束多元函数的基本概念2一、区域1.邻域点集称为点P0的邻域.例如,在平面上,(圆邻域)在空间中,(球邻域)说明:若不需要强调邻域半径,也可写成点P0的去心邻域记为机动目录上页下页返回结束3在讨论实际问题中也常使用方邻域,平面上的方邻域为。因为方邻域与圆邻域可以互相包含.机动目录上页下页返回结束42.区域(1)内点、外点、边界点设有

2、点集E及一点P:若存在点P的某邻域U(P)E,若存在点P的某邻域U(P)∩E=,若对点P的任一邻域U(P)既含E中的内点也含E则称P为E的内点;则称P为E的外点;则称P为E的边界点.机动目录上页下页返回结束的外点,显然,E的内点必属于E,E的外点必不属于E,E的边界点可能属于E,也可能不属于E.5(2)聚点若对任意给定的,点P的去心机动目录上页下页返回结束邻域内总有E中的点,则称P是E的聚点.聚点可以属于E,也可以不属于E(因为聚点可以为所有聚点所成的点集成为E的导集.E的边界点)注:内点一定是聚点,而

3、边界点不一定是聚点。6D(3)开区域及闭区域若点集E的点都是内点,则称E为开集;若点集EE,则称E为闭集;若集D中任意两点都可用一完全属于D的折线相连,开区域连同它的边界一起称为闭区域.则称D是连通的;连通的开集称为开区域,简称区域;机动目录上页下页返回结束。。E的边界点的全体称为E的边界,记作E;7例如,在平面上开区域闭区域机动目录上页下页返回结束8整个平面点集是开集,是最大的开域,也是最大的闭域;但非区域.机动目录上页下页返回结束o对区域D,若存在正数K,使一切点PD与某定点A

4、的距离APK,则称D为有界域,界域.否则称为无93.n维空间n元有序数组的全体称为n维空间,n维空间中的每一个元素称为空间中的称为该点的第k个坐标.记作即机动目录上页下页返回结束一个点,当所有坐标称该元素为中的零元,记作O.10的距离记作中点a的邻域为机动目录上页下页返回结束规定为与零元O的距离为11二、多元函数的概念引例:圆柱体的体积定量理想气体的压强三角形面积的海伦公式机动目录上页下页返回结束12定义1.设非空点集点集D称为函数的定义域;数集称为函数的值域.特别地,当n=2时,有二元函数当n=3时

5、,有三元函数映射称为定义在D上的n元函数,记作机动目录上页下页返回结束13例如,二元函数定义域为圆域说明:二元函数z=f(x,y),(x,y)D图形为中心在原点的上半球面.机动目录上页下页返回结束的图形一般为空间曲面.三元函数定义域为图形为空间中的超曲面.单位闭球14三、多元函数的极限定义2.设n元函数点,则称A为函数(也称为n重极限)当n=2时,记二元函数的极限可写作:P0是D的聚若存在常数A,对一记作都有机动目录上页下页返回结束对任意正数,总存在正数,切15例1.设求证:证:故总有机动目录上页下页返回结

6、束要证16例2.设求证:证:故总有要证机动目录上页下页返回结束17若当点趋于不同值或有的极限不存在,解:设P(x,y)沿直线y=kx趋于点(0,0),在点(0,0)的极限.则可以断定函数极限则有k值不同极限不同!在(0,0)点极限不存在.以不同方式趋于不存在.例3.讨论函数函数机动目录上页下页返回结束18仅知其中一个存在,推不出其它二者存在.二重极限不同.如果它们都存在,则三者相等.例如,显然与累次极限但由例3知它在(0,0)点二重极限不存在.例3目录上页下页返回结束19四、多元函数的连续性定义3.设n元函数定

7、义在D上,如果函数在D上各点处都连续,则称此函数在D上如果存在否则称为不连续,此时称为间断点.则称n元函数机动目录上页下页返回结束连续.连续,20例如,函数在点(0,0)极限不存在,又如,函数上间断.故(0,0)为其间断点.在圆周机动目录上页下页返回结束结论:一切多元初等函数在定义区域内连续.21定理:若f(P)在有界闭域D上连续,则机动目录上页下页返回结束*(4)f(P)必在D上一致连续.在D上可取得最大值M及最小值m;(3)对任意(有界性定理)(最值定理)(介值定理)(一致连续性定理)闭域上多元连续函数有与一元

8、函数类似的如下性质:(证明略)22解:原式例5.求例6.求函数的连续域.解:机动目录上页下页返回结束23内容小结1.区域邻域:区域连通的开集2.多元函数概念n元函数常用二元函数(图形一般为空间曲面)三元函数机动目录上页下页返回结束24有3.多元函数的极限4.多元函数的连续性1)函数2)闭域上的多元连续函数的性质:有界定理;最值定理;介值定理3)一切多元初等函

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。