资源描述:
《§185实践与探索课件(3).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、§18.5.3实践与探索导言在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。问题情境一小明同学在探索鞋码的两种长度“码”与“厘米”之间的换算关系时,通过调查获得下表数据:(1)根据表中提供的信息,你能猜想出y与x之间的函数关系式吗?(2)问43码的鞋相当于多少厘米的鞋?x(厘米)2323.524.525.526……y(码)3637394142……分析把实践或调查中得到的一些变量的值,通过描点
2、得出函数的近似图象,再根据画出的图象的特征,猜想相应的函数名称,然后利用待定系数法求出函数关系式.x(厘米)y(码)2323.524O40364137383924.525.5252626.52742探究解决方法解:(1)设鞋长是x厘米,鞋子的码数是y,那么y与x的函数关系式可能是y=kx+b(k≠0)根据题意,得所以y与x的函数关系式可能是:y=2x-10(2)当y=43时,2x-10=43,解得x=26.5.问题情境二为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数
3、据如下:你能否据此求出V和t的函数关系?t(℃)-40-20-10010204060V(cm3)998.3999.2999.610001000.31000.71001.61002.3客观分析分析:将这些数值所对应的点在坐标系中描出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.明确两点我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较
4、接近的函数关系式进行研究.常用的方法是:把实践或调查中得到的一些变量的值,通过描点得出函数的近似图象,再根据画出的图象的特征,猜想相应的函数名称,然后利用待定系数法求出函数关系式.应用提高小明在做电学实验时,电路图如图所示.在保持电压不变的情况下,改换不同的电阻R,并用电流表测量出通过不同电阻的电流I,记录结果如下:(1)建立适当的平面直角坐标系,在坐标系中描出表格中的各点,并画出该函数的近似图象;(2)观察图象,猜想I与R之间的函数关系,并求出函数解析式;(3)小明将一个未知电阻值的电阻串联到电路中,查得电流表的度
5、数为0.5安培,你知道这个电阻的电阻值吗?电阻R(欧姆)24681012电流I(安培)6321.51.21解答用描点法画出表格中的各点,可得函数的近似图象(如图所示),由近似图象可知,是反比例函数,且用待定系数法求得函数解析式为I=,当I=0.5时,R=24.课间练习课本P56的练习