欢迎来到天天文库
浏览记录
ID:50636297
大小:1.01 MB
页数:14页
时间:2020-03-13
《新课标高三数学第一轮复习单元讲座.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《新课标》高三数学第一轮复习单元讲座—函数与方程一.课标要求:1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这
2、三个“二次”问题有关。预计2008年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力。(1)题型可为选择、填空和解答;(2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。三.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数,把使成立的实数叫做函数的零点。函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。二次函数的零点:1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数
3、有两个零点;2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。既存在,使得,这个也就是方程的根。2.二分法二分法及步骤:对于在区间,上连续不断,且满足·的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度,用二分法求函数的零点近似值的步骤如下:(1)确定区间,,验证·
4、,给定精度;(2)求区间,的中点;(3)计算:①若=,则就是函数的零点;②若·<,则令=(此时零点);③若·<,则令=(此时零点);(4)判断是否达到精度;即若,则得到零点零点值(或);否则重复步骤2~4。注:函数零点的性质从“数”的角度看:即是使的实数;从“形”的角度看:即是函数的图象与轴交点的横坐标;若函数的图象在处与轴相切,则零点通常称为不变号零点;若函数的图象在处与轴相交,则零点通常称为变号零点。注:用二分法求函数的变号零点:二分法的条件·表明用二分法求函数的近似零点都是指变号零点。3.二次函数的基本性质(1)二次函数的三种表示法:y=a
5、x2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n。(2)当a>0,f(x)在区间[p,q]上的最大值M,最小值m,令x0=(p+q)。若-
6、f(x)=0在区间(p,q)内只有一根f(p)·f(q)<0,或f(p)=0(检验)或f(q)=0(检验)检验另一根若在(p,q)内成立。四.典例解析题型1:方程的根与函数零点例1.(1)方程lgx+x=3的解所在区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)(2)设a为常数,试讨论方程的实根的个数。解析:(1)在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图)。它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了。实际上这是要比较与2的大
7、小。当x=2时,lgx=lg2,3-x=1。由于lg2<1,因此>2,从而判定∈(2,3),故本题应选C。(2)原方程等价于即构造函数和,作出它们的图像,易知平行于x轴的直线与抛物线的交点情况可得:①当或时,原方程有一解;②当时,原方程有两解;③当或时,原方程无解。点评:图象法求函数零点,考查学生的数形结合思想。本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间。数形结合,要在结合方面下功夫。不仅要通过图象直观估计,而且还要计算的邻近两个函数值,通过比较其大小进行判断。例2.(2005广东19)设函数在上满足,,且在闭区间[0,7]上
8、,只有。(Ⅰ)试判断函数的奇偶性;(Ⅱ)试求方程=0在闭区间[-2005,2005]上的根的个数,并证明你的结论。解析:由f(2-x)=
此文档下载收益归作者所有