欢迎来到天天文库
浏览记录
ID:50499847
大小:110.36 KB
页数:4页
时间:2020-03-09
《九年级数学下册第6章图形的相似6.7用相似三角形解决问题(1)教案(新版)苏科版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、6.7用三角形相似解决问题(1)教学目标:1.通过用相似三角形有关知识解决实际问题的过程,提高学生分析、解决实际问题的能力;2.学会建构“用相似三角形解决问题”的基本数学模型;3.通过知识拓展,激发学生学数学的兴趣,使学生积极参与探索活动,体验成功的喜悦,培养科学的数学观.教学重点:根据实际问题,依据相似三角形的有关知识,构建数学模型,解决实际问题.教学难点:将实际问题抽象、建模以辅助解题.教学过程:一、课前专训1.在比例尺为1:38000的城市交通地图上,某条道路的长为5cm,则它的实际长度为(
2、)A.0.19kmB.1.9kmC.19kmD.190km2.若a、b、c、d是成比例线段,其中a=5cm,b=2.5cm,c=8cm,则线段d的长为( )A.2cmB.4cmC.5cmD.6cm要求:掌握成比例线段,为本节课新授内容作铺垫.三、新知:1.情景引入(1)当人们在阳光下行走时,会出现一个怎样的现象?生:影子.(2)你能举出生活中的例子吗?生:……要求:学生思考教师出示的问题,积极回答问题.从实际生活情境出发,设计问题,引导学生积极思考.2.活动探究活动一、 实验探究1.阅读“平行投影”
3、的概念,了解平行投影;2.数学实验:测量阳光下物体的影长.结论:1.在阳光下,在同一时刻,物体高度与物体的影长存在的关系是:物体的高度越高,物体的影长就越长.2.在平行光线照射下,不同物体的物高与影长成比例.要求:学生阅读概念,认识平行投影.通过数学实验探究物体影长和物高之间的关系.展示平行投影的图片说明,帮助学生直观的了解所学内容.3.思考操作如图6-42中,甲木杆AB在阳光下的影长为BC.试在图中画出同一时刻乙、丙两根木杆在阳光下的影长.思考:如何用相似三角形的知识说明在平行光线的照射下,不同物体
4、的物高与影长成比例?要求:根据“太阳光可以看成平行光线”的表述,画出与图中虚线平行的线段.引导学生通过观察、分析寻找画乙、丙两个木杆影长的办法.四、例题背景故事:古埃及国王为了知道金字塔的高度,请一位学者来解决这个问题.在某一时刻,当这位学者确认在阳光下他的影长等于他的身高时,要求他的助手测出金字塔的影长,这样他就十分准确地知道了金字塔的高度.问题:如图6-43,AC是金字塔的高,如果此时测得金字塔的影DB的长为32m,金字塔底部正方形的边长为230m,你能计算这座金字塔的高度吗?拓展:你能用这种方法
5、测量出学校附近某一物体的高度吗?要求:学生分小组讨论,发现生活中的数学,并能用本节课的知识加以阐述.运用转化思想,将立体图形转化为平面图形,利用相似三角形和平行投影的知识,计算得到答案.引导学生利用所学知识解决相关问题,渗透转化思想.五、练一练1.在阳光下,身高为1.68m的小强在地面上的影长为2m.在同一时刻,测得旗杆在地面上的影长为18m.求旗杆的高度(精确到0.1m).2.在阳光下,高为6m的旗杆在地面上的影长为4m.在同一时刻,测得附近一座建筑物的影长为36m.求这座建筑物的高度.要求:阅读问
6、题,构建数学模型,利用相似三角形的知识解决问题.引导学生构建模型,灵活运用所学知识解决问题.六、总结:1.通过本节课的学习,你获得了哪些收获?要求:回顾本节课的知识,达到温故而知新的目的.引导学生梳理本节课的知识点,将新学的知识打牢、夯实.课后作业1、在阳光下,高为6m的旗杆在地面上的影长为4m,在同一时刻,测得附近一座建筑物的影长为36m,则这座建筑物的高度为 m.2、如图,为了测量一池塘的宽DE,在岸边找一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE,交E
7、C的延长线于B,测得AB=6m,求池塘的宽DE.3、如图,在阳光下,某一时刻,旗杆AB的影子一部分在地面上,另一部分在建筑物的墙面上.设旗杆AB在地面上的影长BD为12m,墙面上的影长CD为3m;同一时刻,竖立于地面长1m的木杆的影长为0.8m,求旗杆AB的高度.4、如图,某数学课外实习小组想利用树影测量树高,他们在同一时刻测得一身高为1.5米的同学的影子长为1.35米,因大树靠近一栋建筑物,大树的影子不全在地面上,他们测得地面部分的影子长为BC=3.6米,墙上影子CD=1.8米,求树高AB.5、在同
8、一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为 m. 板书6.7用相似三角形解决问题(1)在平行光线照射下,不同物体的物高与影长成比例.活动一例题
此文档下载收益归作者所有