高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc

高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc

ID:50452211

大小:536.50 KB

页数:9页

时间:2020-03-09

高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc_第1页
高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc_第2页
高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc_第3页
高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc_第4页
高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc_第5页
资源描述:

《高考数学选修知识讲解_直线与抛物线的位置关系(理)(2).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、直线与抛物线的位置关系编稿:张希勇审稿:李霞【学习目标】1.能正熟练使用直接法、待定系数法、定义法求抛物线的方程;2.能熟练运用几何性质(如范围、对称性、顶点、离心率、准线)解决相关问题;3.能够把直线与抛物线的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.【知识网络】抛物线抛物线的定义与标准方程抛物线的几何性质直线与抛物线的位置关系抛物线的综合问题抛物线的弦问题抛物线的准线【要点梳理】【高清课堂:直线与抛物线的位置关系371713】要点一、抛物线的定义定义:平面内与一个定点和一条定直线(不经过点)的距离相等的

2、点的轨迹叫做抛物线,定点叫做抛物线的焦点,定直线叫做抛物线的准线.要点二、抛物线的标准方程抛物线标准方程的四种形式:,,,图像方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)焦点准线要点诠释:求抛物线的标准方程应从“定形”、“定式”和“定值”三个方面去思考.“定形”是指对称中心在原点,以坐标轴为对称轴的情况下,焦点在哪条坐标轴上;“定式”根据“形”设抛物线方程的具体形式;“定量”是指用定义法或待定系数法确定a,b的值.要点三、抛物线的几何性质范围:,,抛物线y2=2px(p>0)在

3、y轴的右侧,开口向右,这条抛物线上的任意一点M的坐标(x,y)的横坐标满足不等式x≥0;当x的值增大时,

4、y

5、也增大,这说明抛物线向右上方和右下方无限延伸。抛物线是无界曲线。对称性:关于x轴对称抛物线y2=2px(p>0)关于x轴对称,我们把抛物线的对称轴叫做抛物线的轴。抛物线只有一条对称轴。顶点:坐标原点抛物线y2=2px(p>0)和它的轴的交点叫做抛物线的顶点。抛物线的顶点坐标是(0,0)。离心率:.抛物线y2=2px(p>0)上的点M到焦点的距离和它到准线的距离的比,叫做抛物线的离心率。用e表示,e=1。抛物线的通径通过抛

6、物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径。要点四、直线与抛物线的位置关系直线与抛物线的位置关系将直线的方程与抛物线的方程y2=2px(p>0)联立成方程组,消元转化为关于x或y的一元二次方程,其判别式为Δ.若,直线与抛物线的对称轴平行或重合,直线与抛物线相交于一点;若①Δ>0直线和抛物线相交,有两个交点;②Δ=0直线和抛物线相切,有一个公共点;③Δ<0直线和抛物线相离,无公共点.直线与抛物线的相交弦设直线交抛物线于点两点,则==同理可得这里的求法通常使用韦达定理,需作以下变形:抛物线的焦点弦问题已知过抛

7、物线的焦点F的直线交抛物线于A、B两点。设A(x1,y1),B(x2,y2),则:①焦点弦长②③,其中

8、AF

9、叫做焦半径,④焦点弦长最小值为2p。根据时,即AB垂直于x轴时,弦AB的长最短,最短值为2p。要点五、抛物线的实际应用与最值问题对于抛物线的实际应用问题,我们要抽象出相应的数学问题,即建立数学模型,一般要先建立直角坐标系,然后利用抛物线定义,求出参数p,得到抛物线方程,利用方程求解抛物线中的最值问题,按照转化途径主要有以下三种:(1)利用定义转化(2)利用抛物线的几何性质(3)转化为函数求最值【典型例题】类型一:抛物线的

10、方程与性质【高清课堂:直线与抛物线的位置关系371713例1】例1.顶点在坐标原点,对称轴是坐标轴,并且经过点M(4,8)的抛物线有几条?求出它们的标准方程.【解析】因为抛物线关于坐标轴对称,它的顶点在原点,并且经过点,所以可设它的标准方程为因为点M在抛物线上,所以即,因此,所求抛物线有两条,它们的标准方程是,【总结升华】抛物线的焦点轴有四种情况,因此在讨论抛物线方程时要注意它的不同位置,恰当的设出方程是解决问题的关键.举一反三:【变式1】若抛物线通过直线与圆x2+y2+6x=0的两个交点,且以坐标轴为对称轴,求该抛物线的方程.

11、【答案】由得,或,根据题意可设抛物线的方程为x2=-2my(m>0)或y2=-2px(p>0),则在抛物线上,∴m=,p=,∴方程为或【变式2】(2015德阳模拟)顶点在原点,经过圆C:的圆心且准线与x轴垂直的抛物线方程为()A.B.C.D.【答案】B【解析】因为圆C:的圆心是抛物线的顶点在原点,焦点在x轴上,且经过点,设标准方程为,因为点在抛物线上,所以,所以p=1,所以所求抛物线方程为:。故选B。类型二:直线与抛物线的位置关系例2.过定点P(0,2)作直线l,使l与抛物线y2=4x有且只有一个公共点,这样的直线l共有____

12、____条.【答案】3【解析】如图,过点P与抛物线y2=4x仅有一个公共点的直线有三条:二条切线、一条与x轴平行的直线.【总结升华】直线与抛物线只有一个公共点时要考虑相交于一点的情况,不要漏掉.举一反三:【变式】已知F是抛物线y2=x的焦点,A,B是该抛物线上的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。