有限状态自动机的确定化.doc

有限状态自动机的确定化.doc

ID:50309139

大小:67.50 KB

页数:10页

时间:2020-03-08

有限状态自动机的确定化.doc_第1页
有限状态自动机的确定化.doc_第2页
有限状态自动机的确定化.doc_第3页
有限状态自动机的确定化.doc_第4页
有限状态自动机的确定化.doc_第5页
资源描述:

《有限状态自动机的确定化.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、有限状态自动机的确定化姓名:翟彦清学号:E10914127一、实验目的设计并实现将NFA确定化为DFA的子集构造算法,从而更好地理解有限自动机之间的等价性,掌握词法分析器自动产生器的构造技术。该算法也是构造LR分析器的基础。输入:非确定有限(穷)状态自动机。输出:确定化的有限(穷)状态自动机二、实验原理一个确定的有限自动机(DFA)M可以定义为一个五元组,M=(K,∑,F,S,Z),其中:(1)K是一个有穷非空集,集合中的每个元素称为一个状态;(2)∑是一个有穷字母表,∑中的每个元素称为一个输入符号;(3)F是一个从K

2、×∑→K的单值转换函数,即F(R,a)=Q,(R,Q∈K)表示当前状态为R,如果输入字符a,则转到状态Q,状态Q称为状态R的后继状态;(4)S∈K,是惟一的初态;(5)ZK,是一个终态集。由定义可见,确定有限自动机只有惟一的一个初态,但可以有多个终态,每个状态对字母表中的任一输入符号,最多只有一个后继状态。对于DFAM,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记符连接形成的字符串可为DFAM所接受。若M的初态结点同时又是终态结点,则称ε可为M所接受(或识别),DFAM所能接受的全部字符

3、串(字)组成的集合记作L(M)。一个不确定有限自动机(NFA)M可以定义为一个五元组,M=(K,∑,F,S,Z),其中:(1)k是一个有穷非空集,集合中的每个元素称为一个状态;(2)∑是一个有穷字母表,∑中的每个元素称为一个输入符号;(3)F是一个从K×∑→K的子集的转换函数;(4)SK,是一个非空的初态集;(5)ZK,是一个终态集。由定义可见,不确定有限自动机NFA与确定有限自动机DFA的主要区别是:(1)NFA的初始状态S为一个状态集,即允许有多个初始状态;(2)NFA中允许状态在某输出边上有相同的符号,即对同一个

4、输入符号可以有多个后继状态。即DFA中的F是单值函数,而NFA中的F是多值函数。因此,可以将确定有限自动机DFA看作是不确定有限自动机NFA的特例。和DFA一样,NFA也可以用矩阵和状态转换图来表示。对于NFAM,若存在一条从某个初态结点到某一个终态结点的通路,则称这条通路上的所有弧的标记(ε除外)连接形成的字符串可为M所接受。NFAM所能接受的全部字符串(字)组成的集合记作L(M)。由于DFA是NFA的特例,所以能被DFA所接受的符号串必能被NFA所接受。设M1和M2是同一个字母集∑上的有限自动机,若L(M1)=L(

5、M2),则称有限自动机M1和M2等价。最新可编辑word文档由以上定义可知,若两个自动机能够接受相同的语言,则称这两个自动机等价。DFA是NFA的特例,因此对于每一个NFAM1总存在一个DFAM2,使得L(M1)=L(M2)。即一个不确定有限自动机能接受的语言总可以找到一个等价的确定有限自动机来接受该语言。NFA确定化为DFA同一个字符串α可以由多条通路产生,而在实际应用中,作为描述控制过程的自动机,通常都是确定有限自动机DFA,因此这就需要将不确定有限自动机转换成等价的确定有限自动机,这个过程称为不确定有限自动机的确

6、定化,即NFA确定化为DFA。下面介绍一种NFA的确定化算法,这种算法称为子集法:(1)若NFA的全部初态为S1,S2,…,Sn,则令DFA的初态为:S=[S1,S2,…,Sn],其中方括号用来表示若干个状态构成的某一状态。(2)设DFA的状态集K中有一状态为[Si,Si+1,…,Sj],若对某符号a∈∑,在NFA中有F({Si,Si+1,…,Sj},a)={Si’,Si+1’,…,Sk’}则令F({Si,Si+1,…,Sj},a)={Si’,Si+1’,…,Sk’}为DFA的一个转换函数。若[Si’,Si+1’,…,

7、Sk‘]不在K中,则将其作为新的状态加入到K中。(3)重复第2步,直到K中不再有新的状态加入为止。(4)上面得到的所有状态构成DFA的状态集K,转换函数构成DFA的F,DFA的字母表仍然是NFA的字母表∑。(5)DFA中凡是含有NFA终态的状态都是DFA的终态。对于上述NFA确定化算法——子集法,还可以采用另一种操作性更强的描述方式,下面我们给出其详细描述。首先给出两个相关定义。假设I是NFAM状态集K的一个子集(即I∈K),则定义ε-closure(I)为:(1)若Q∈I,则Q∈ε-closure(I);(2)若Q∈

8、I,则从Q出发经过任意条ε弧而能到达的任何状态Q’,则Q’∈ε-closure(I)。状态集ε-closure(I)称为状态I的ε闭包。假设NFAM=(K,∑,F,S,Z),若I∈K,a∈∑,则定义Ia=ε-closure(J),其中J是所有从ε-closure(I)出发,经过一条a弧而到达的状态集。NFA确定化的实质是以原有状态

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。