欢迎来到天天文库
浏览记录
ID:50233852
大小:163.00 KB
页数:2页
时间:2020-03-05
《九年级常用数学公式定理.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、九年级常用数学公式定理1、多边形内角和公式:n边形的内角和等于(n-2)180º(n≥3,n是正整数),外角和等于360º2、平行线分线段成比例定理:推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。*3、直角三角形中的射影定理:如图:Rt△ABC中,∠ACB=90o,CD⊥AB于D,则有:(1)(2)(3)4、圆的有关性质:(1)垂径定理:如果一条直线具备以下五个性质中的任意两个性质:①经过圆心;②垂直弦;③平分弦;④平分弦所对的劣弧;⑤平分弦所对的优弧,那么这条直线就具有另外三个性质.注:具备①,③时,弦不能是直径.(2)两条平行弦所夹的弧相等.(
2、3)圆心角的度数等于它所对的弧的度数.(4)一条弧所对的圆周角等于它所对的圆心角的一半.(5)圆周角等于它所对的弧的度数的一半.(6)同弧或等弧所对的圆周角相等.(7)在同圆或等圆中,相等的圆周角所对的弧相等.(8)90º的圆周角所对的弦是直径,反之,直径所对的圆周角是90º,直径是最长的弦.(9)圆内接四边形的对角互补.5、三角形的内心与外心:三角形的内切圆的圆心叫做三角形的内心.三角形的内心就是三内角角平分线的交点.三角形的外接圆的圆心叫做三角形的外心.三角形的外心就是三边中垂线的交点.常见结论:(1)Rt△ABC的三条边分别为:a、b、c(c为斜边),则它的内切圆的半径
3、;(2)△ABC的周长为,面积为S,其内切圆的半径为r,则。重心:三条中线的交点,内分中线1:26、面积公式:①S正△=×(边长)2.S△=absinC(两边及其夹角正弦值的乘积的一半)=水平宽x铅垂高 ②弧长L=. ③.7、一元二次方程:对于方程:ax2+bx+c=0:求根公式是x=,8、概率:如果用P表示一个事件A发生的概率,则0≤P(A)≤1;P(必然事件)=1;P(不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。③大量的重复实验时频率可视为事件发生概率的估计值;9、锐角三角函数:hlα①设∠A是Rt△AB
4、C的任一锐角,则∠A的正弦:sinA=,∠A的余弦:cosA=,∠A的正切:tanA=.并且sin2A+cos2A=1.0<sinA<1,0<cosA<1,tanA>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小.②余角公式:sin(90º-A)=cosA,cos(90º-A)=sinA.③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,tan30º=2,tan45º=1,tan60º=.④斜坡的坡度:i==.设坡角为α,则i=tanα=.10、二次函数的有关知识:1.定义:一
5、般地,如果是常数,,那么叫做的二次函数.2.求抛物线的顶点、对称轴的方法(1)公式法:,∴顶点是,对称轴是直线.(2)配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。若已知抛物线上两点(及y值相同),则对称轴方程可以表示为:3.抛物线中,的作用(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线,故:①时,对称轴为轴;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧.(3)的大小决定抛物
6、线与轴交点(0,)的位置.4.用待定系数法求二次函数的解析式(1)一般式:.已知图像上三点或三对、的值,通常选择一般式.(2)顶点式:.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与轴的交点坐标、,通常选用交点式:.5.直线与抛物线的交点(1)轴与抛物线得交点为(0,).(2)抛物线与轴的交点二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:(3)一次函数的图像与二次函数的图像的交点,由方程组的解的数目来确定:①方程组有两组不同的解时与有两个交点;②方程组只有一组解时与只有一个交点;③
7、方程组无解时与没有交点.(4)抛物线与轴两交点之间的距离:若抛物线与轴两交点为,则2
此文档下载收益归作者所有