集合知识点+基础习题(有答案).doc

集合知识点+基础习题(有答案).doc

ID:50176229

大小:480.00 KB

页数:8页

时间:2020-03-06

集合知识点+基础习题(有答案).doc_第1页
集合知识点+基础习题(有答案).doc_第2页
集合知识点+基础习题(有答案).doc_第3页
集合知识点+基础习题(有答案).doc_第4页
集合知识点+基础习题(有答案).doc_第5页
资源描述:

《集合知识点+基础习题(有答案).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、集合练习题知识点一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).1.集合中元素具的有几个特征⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.2.常用的数集及其记法  我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R3.元素与集合

2、之间的关系4.反馈演练1.填空题2.选择题⑴以下说法正确的()(A)“实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={}中的元素,则实数为()8(A)2(B)0或3(C)3(D)0,2,3均可二、集合的几种表示方法1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集例如:A={1~20以内所有质数}⑵无限集--------含有无限个元素的集合叫无限集例如:B

3、={不大于3的所有实数}2、描述法-用集合所含元素的共同特征表示集合的方法.具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.3、图示法--画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示如:集合{1,2,3,4,5}用图示法表示为:三、集合间的基本关系观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}.(2)A={x

4、x>3},B={x

5、3x-6>0}.(3)A={正方形},B={四边

6、形}.(4)A=,B={0}.1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作AB(或BA),即若任意xA,有xB,则AB(或AB)。这时我们也说集合A是集合B的子集(subset)。8如果集合A不包含于集合B,或集合B不包含集合A,就记作A⊈B(或B⊉A),即:若存在xA,有xB,则A⊈B(或B⊉A)说明:AB与BA是同义的,而AB与BA是互逆的。规定:空集是任何集合的子集,即对于任意一个集合A都有A。例1.判断下列集合的关系.(1)N_____Z;(2)N_____Q;(3)R_____Z;(4)R_

7、____Q;(5)A={x

8、(x-1)2=0},B={y

9、y2-3y+2=0};(6)A={1,3},B={x

10、x2-3x+2=0};(7)A={-1,1},B={x

11、x2-1=0};(8)A={x

12、x是两条边相等的三角形}B={x

13、x是等腰三角形}。问题:观察(7)和(8),集合A与集合B的元素,有何关系?集合A与集合B的元素完全相同,从而有:2.集合相等定义:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素(即AB),同时集合B的任何一个元素都是集合A的元素(即BA),则称集合A等于集合B,记作A=B。如:A={x

14、x=2m+1,mZ},B={x

15、x=2n-1,nZ},此时有A

16、=B。问题:(1)集合A是否是其本身的子集?(由定义可知,是)(2)除去与A本身外,集合A的其它子集与集合A的关系如何?(包含于A,但不等于A)3.真子集:由“包含”与“相等”的关系,可有如下结论:(1)AA(任何集合都是其自身的子集);(2)若AB,而且AB(即B中至少有一个元素不在A中),则称集合A是集合B的真子集(propersubset),记作A⊂≠B。(空集是任何非空集合的真子集)(3)对于集合A,B,C,若A⊆B,B⊆C,即可得出A⊆C;对A⊂≠B,B⊂≠C,同样有A⊂≠C,即:包含关系具有“传递性”。4.证明集合相等的方法:(1)证明集合A,B中的元素完全相同;(具体数据)(2)

17、分别证明AB和BA即可。(抽象情况)对于集合A,B,若AB而且BA,则A=B。例1.判断下列两组集合是否相等?(1)A={x

18、y=x+1}与B={y

19、y=x+1};(2)A={自然数}与B={正整数}例2.解不等式x-3>2,并把结果用集合表示。结论:一般地,一个集合元素若为n个,则其子集数为2n个,其真子集数为2n-1个,特别地,空集的子集个数为1,真子集个数为0。81、已知集合,,且,则等于(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。