高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt

高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt

ID:50168707

大小:632.50 KB

页数:30页

时间:2020-03-09

高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt_第1页
高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt_第2页
高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt_第3页
高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt_第4页
高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt_第5页
资源描述:

《高中数学 3.2.1几类不同增长的函数模型课件 新人教A版必修1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三章——函数的应用3.2函数模型及其应用3.2.1几类不同增长的函数模型[学习目标]1.掌握常见增长函数的定义、图象、性质,并体会其增长快慢;理解直线上升,对数增长,指数爆炸的含义.2.会分析具体的实际问题,建模解决实际问题.栏目索引CONTENTSPAGE1预习导学挑战自我,点点落实2课堂讲义重点难点,个个击破3当堂检测当堂训练,体验成功预习导学挑战自我,点点落实[预习导引]1.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增*3.2.1 几类不同增长的函数模型图象的变化随x增大逐渐随x增大逐

2、渐随n值而不同变陡变缓*3.2.1 几类不同增长的函数模型2.三种函数的增长速度比较(1)在区间(0,+∞)上,函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是,但不同,且不在同一个“档次”上.(2)在区间(0,+∞)上随着x的增大,y=ax(a>1)增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会.(3)存在一个x0,使得当x>x0时,有logax<xn<ax.增函数增长速度越来越慢课堂讲义重点难点,个个击破*3.2.1 几类不同增长的函数模型答案D*3.2.1 几类不同增长的函数模型(2)四个变量y

3、1,y2,y3,y4随变量x变化的数据如下表:x151015202530y1226101226401626901y22321024327681.05×1063.36×1071.07×109y32102030405060y424.3225.3225.9076.3226.6446.907*3.2.1 几类不同增长的函数模型关于x呈指数函数变化的变量是________.解析以爆炸式增长的变量是呈指数函数变化的.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,可知变量y2关于x呈指数函数

4、变化.y2*3.2.1 几类不同增长的函数模型规律方法在区间(0,+∞)上,尽管函数y=ax(a>1),y=logax(a>1)和y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=ax(a>1)的增长速度越来越快,会超过并远远大于y=xn(n>0)的增长速度,而y=logax(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0,就有logax<xn<ax.*3.2.1 几类不同增长的函数模型跟踪演练1如图给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系

5、的函数模型是()*3.2.1 几类不同增长的函数模型A.指数函数:y=2tB.对数函数:y=log2tC.幂函数:y=t3D.二次函数:y=2t2解析由题中图象可知,该函数模型为指数函数.答案A*3.2.1 几类不同增长的函数模型要点二 几种函数模型的比较例2某汽车制造商在2013年初公告:随着金融危机的解除,公司计划2013年生产目标定为43万辆.已知该公司近三年的汽车生产量如下表所示:年份201020112012产量8(万)18(万)30(万)*3.2.1 几类不同增长的函数模型如果我们分别将2010,2011,2012,2013定义为第一、二、三、四年.现在你有两个函数模型:

6、二次函数模型f(x)=ax2+bx+c(a≠0),指数函数模型g(x)=a·bx+c(a≠0,b>0,b≠1),哪个模型能更好地反映该公司年销量y与年份x的关系?解建立年销量y与年份x的函数,可知函数必过点(1,8),(2,18),(3,30).(1)构造二次函数模型f(x)=ax2+bx+c(a≠0),*3.2.1 几类不同增长的函数模型将点坐标代入,则f(x)=x2+7x,故f(4)=44,与计划误差为1.*3.2.1 几类不同增长的函数模型(2)构造指数函数模型g(x)=a·bx+c(a≠0,b>0,b≠1),*3.2.1 几类不同增长的函数模型由(1)(2)可得,f(x)=

7、x2+7x模型能更好地反映该公司年销量y与年份x的关系.*3.2.1 几类不同增长的函数模型规律方法1.此类问题求解的关键是首先利用待定系数法求出相关函数模型,也就是借助数据信息,得到相关方程,进而求出待定参数.2.理解“模型能更好反映该公司年销量y与年份x的关系”的含义,在此基础上利用既定值来检验模型的优劣.*3.2.1 几类不同增长的函数模型跟踪演练2函数f(x)=lgx,g(x)=0.3x-1的图象如图.(1)指出C1,C2分别对应图中哪一个函数;解由函数图象特

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。