欢迎来到天天文库
浏览记录
ID:50108441
大小:37.93 KB
页数:4页
时间:2020-03-04
《2019高一数学必修四知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2019高一数学必修四知识点总结正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.第二象限角的集合为k36090k360180,k第三象限角的集合为k360180k360270,k第四象限角的集合为k360270k360360,k终边在x轴上的角的集合为k180,k终边在y轴上的角的集合为k18090,k终边在坐标轴上的角的集合为k90,k3、与角终边相同的角的集合为k360,k第一象限角的集合为k3
2、60k36090,k4、已知是第几象限角,确定n所在象限的方法:先把各象限均分n等n*份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.n5、长度等于半径长的弧所对的圆心角叫做1弧度.l6、半径为r的圆的圆心角所对弧的长为l,则角的弧度数的绝对值是.r1807、弧度制与角度制的换算公式:2360,1,157.3.1808、若扇形的圆心角为为弧度制,半径为r,弧长为l,周长为C,面积为S,11则lr,C2rl,Slrr2.229、设是一个任意大小的角,的终边上任意一点的坐标是x
3、,y,它与原点的距离是rr0,则sinyxy,cos,tanx0.rrx10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.11、三角函数线:sinα=MP,cosα=OM,tanα=AT.12、同角三角函数的基本关系:(1)sinα+cosα=1(sinα=1-cos2α,cos2α=1-sin2α);(2)sinα=tanαcosαsinαsinα=tanαcosα,cosα=.tanα13、三角函数的诱导公式:(1)sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,t
4、an(2kπ+α)=tanα(k∈Z).(2)sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.(3)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.(4)sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.口诀:函数名称不变,符号看象限.(5)sin-α=cosα,cos-α=sinα.22π+α=cosα,cos+α=-sinα.22(6)sin口诀:奇变偶不变,符号看象限.14、函数y=sinx的图象上所有点向左(右)平移
5、个单位长度,得到函数y=sin(x+)的图象;再将函数y=sin(x+)的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数y=sin(ωx+)的图象;再将函数(缩短)到原来的A倍(横坐标不变),y=sin(ωx+)的图象上所有点的纵坐标伸长得到函数y=Asin(ωx+)的图象.函数y=sinx的图象上所有点的横坐标伸长(缩短)到原来的得到函数y=sinωx的图象;再将函数y=sinωx的图象上所有点向左(右)平移倍(纵坐标不变),个单位ω长度,得到函数y=sin(ωx+)的图象;再将函数y=sin(ωx+)的图象上所
6、有点第2/6页的纵坐标伸长(缩短)到原来的A倍(横坐标不变),得到函数y=Asin(ωx+)的图象.函数y=Asin(ωx+)(A>0,ω>0)的性质:①振幅:A;②周期:T=2π;③频率:f=1ω=;④相位:ωx+;⑤初相:T2π函数y=Asin(ωx+)+B,当x=x1时,取得最小值为ymin;当x=x2时,取得最11T(ymax-ymin),B=(ymax+ymin),=x2-x1(x10时,λa的方向与a的方向相同;当λ
此文档下载收益归作者所有