欢迎来到天天文库
浏览记录
ID:50007651
大小:70.50 KB
页数:7页
时间:2020-03-03
《七年级数学下册第3章整式的乘除3.3多项式的乘法作业设计浙教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.3多项式的乘法一.选择题(共4小题)1.已知(x﹣m)(x+n)=x2﹣3x﹣4,则m﹣n的值为( )A.1B.﹣3C.﹣2D.32.(x2+ax+8)(x2﹣3x+b)展开式中不含x3和x2项,则a、b的值分别为( )A.a=3,b=1B.a=﹣3,b=1C.a=0,b=0D.a=3,b=83.若2x3﹣ax2﹣5x+5=(2x2+ax﹣1)(x﹣b)+3,其中a、b为整数,则a+b之值为何?( )A.﹣4B.﹣2C.0D.44.下列计算错误的是( )A.(x+a)(x+b)=x2+(a+b)x+abB.(x+a)(x﹣b)=x2+(
2、a+b)x+abC.(x﹣a)(x+b)=x2+(b﹣a)x+(﹣ab)D.(x﹣a)(x﹣b)=x2﹣(a+b)x+ab二.填空题(共8小题)5.若(x+1)(x+a)展开是一个二次二项式,则a= 6.定义运算:a⊕b=(a+b)(b﹣2),下面给出这种运算的四个结论:①3⊕4=14;②a⊕b=b⊕a;③若a⊕b=0,则a+b=0;④若a+b=0,则a⊕b=0.其中正确的结论序号为 .(把所有正确结论的序号都填在横线上)7.已知m+n=3,mn=﹣6,则(1﹣m)(1﹣n)= .8.已知(3x﹣p)(5x+3)=15x2﹣6x+q,则p+q
3、= .9.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的长方形,则需要C类卡片 张.(第9题图)10.一个三角形的底边长为(2a+6b),高是(3a﹣5b),则这个三角形的面积是 .11.计算下列各式,然后回答问题.(a+4)(a+3)= ;(a+4)(a﹣3)= ;(a﹣4)(a+3)= ;(a﹣4)(a﹣3)= .(1)从上面的计算中总结规律,写出下式结果.(x+a)(x+b)= .(2)运用上述结果,写出下列各题结果.①(x+2008)(x﹣1000)= ;②(x﹣200
4、5)(x﹣2000)= .12.已知m,n满足
5、m+1
6、+(n﹣3)2=0,化简(x﹣m)(x﹣n)= .三.解答题(共6小题)13.已知将(x3+mx+n)(x2﹣3x+4)展开的结果不含x3和x2项.(m,n为常数)(1)求m、n的值;(2)在(1)的条件下,求(m+n)(m2﹣mn+n2)的值.14.探究新知:(1)计算:(a﹣2)(a2+2a+4)= ;(2x﹣y)(4x2+2xy+y2)= ;(x+3)(x2﹣3x+9)= ;(m+3n)(m2﹣3mn+9n2)= .发现规律:(2)上面的多项式乘法计算很简洁,用含a、b字母表
7、示为(a﹣b)(a2+ab+b2)= ;(a+b)(a2﹣ab+b2)= .(3)计算:①(4﹣x)(16+4x+x2);②(3x+2y)(9x2﹣6xy+4y2).15.如图所示,某规划部门计划将一块长为(3a+b)米,宽为(2a+b)米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.(第15题图)16.已知有理数a、b、c满足
8、a﹣b﹣3
9、+(b+1)2+
10、c﹣1
11、=0,求(﹣3ab)•(a2c﹣6b2c)的值.17.先阅读后作答:根据几何图形的面积关系可以说明整
12、式的乘法.例如:(2a+b)(a十b)=2a2+3ab+b2,就可以用图①的面积关系来说明.(第17题图)(1)根据图②写出一个等式:(2)(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.18.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.参考答案一.1.D2.A3.D4.B二.5.﹣1或06.①④7.﹣88.﹣69.710.3a2+4ab﹣15b211.解:(a+4)(a+3)=a2+7a+12;(a+4
13、)(a﹣3)=a2+a﹣12;(a﹣4)(a+3)=a2﹣a﹣12;(a﹣4)(a﹣3)=a2﹣7a+12.(1)(x+a)(x+b)=x2+(a+b)x+ab.(2)①(x+2008)(x﹣1000)=x2+1008x﹣2008000;②(x﹣2005)(x﹣2000)=x2﹣4005x+4010000.12.解:∵
14、m+1
15、+(n﹣3)2=0,∴m+1=0,n﹣3=0,即m=﹣1,n=3,则原式=x2﹣(m+n)x+mn=x2﹣2x﹣3.三.13.解:(1)(x3+mx+n)(x2﹣3x+4),=x5﹣3x4+4x3+mx3﹣3mx2+4mx+
16、nx2﹣3nx+4n,=x5﹣3x4+(4+m)x3+(n﹣3m)x2+(4m﹣3n)x+4n,由题意,得,解得,(2)(
此文档下载收益归作者所有