资源描述:
《1995全国硕士研究生数学真题及答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1995年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.)(1)______________.(2)______________.(3)设,则______________.(4)幂级数的收敛半径______________.(5)设三阶方阵、满足关系式:,且,则______________.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)设有直线及平面,则直线()(A)平行于(B)在上(C)垂直于(D)与斜交(2)设在上,则、、或的大小顺序是()(A)(B)(C)(D)(3)设可导,,则是
2、在处可导的()(A)充分必要条件(B)充分条件但非必要条件(C)必要条件但非充分条件(D)既非充分条件又非必要条件(4)设,则级数()(A)与都收敛(B)与都发散(C)收敛而发散(D)发散而收敛(5)设,,,,则必有()(A)(B)(C)(D)三、(本题共2小题,每小题5分,满分10分.)(1)设,其中、都具有一阶连续偏导数,且,求.(2)设函数在区间上连续,并设,求.四、(本题共2小题,每小题6分,满分12分.)(1)计算曲面积分,其中为锥面在柱体内的部分.(2)将函数展开成周期为4的余弦级数.五、(本题满分7分)设曲线位于平面的第一象限内
3、,上任一点处的切线与轴总相交,交点记为.已知,且过点,求的方程.六、(本题满分8分)设函数在平面上具有一阶连续偏导数,曲线积分与路径无关,并且对任意恒有,求.七、(本题满分8分)假设函数和在上存在二阶倒数,并且,,试证:(1)在开区间内;(2)在开区间内至少存在一点,使.八、(本题满分7分)设三阶实对称矩阵的特征值为,,对应于的特征向量为,求.九、(本题满分6分)设是阶矩阵,满足(是阶单位阵,是的转置矩阵),,求.十、填空题(本题共2小题,每小题3分,满分6分.)(1)设表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则的数
4、学期望___________.(2)设和为两个随机变量,且,,则___________.十一、(本题满分6分)设随机变量的概率密度为求随机变量的概率密度.1995年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.)(1)【答案】【解析】这是型未定式求极限,,令,则当时,,所以,故.(2)【答案】【解析】.【相关知识点】积分上限函数的求导公式:.(3)【答案】【解析】利用向量运算律有(其中).(4)【答案】【解析】令,则当时,有而当时,幂级数收敛,即时,此幂级数收敛,当时,即时,此幂级数发散,因此收敛
5、半径为.(5)【答案】【解析】在已知等式两边右乘以,得,即.因为,所以=.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(C)【解析】这是讨论直线的方向向量与平面的法向量的相互关系问题.直线的方向向量,平面的法向量,,.应选(C).(2)【答案】(B)【解析】由可知在区间上为严格单调递增函数,故由微分中值定理,.所以,故应选择(B).(3)【答案】(A)【解析】由于利用观察法和排除法都很难对本题作出选择,必须分别验证充分条件和必要条件.充分性:因为,所以,由此可得在处可导.必要性:设在处可导,则在处可导,由可导的充要条件
6、知.①根据重要极限,可得,,②结合①,②,我们有,故.应选(A).(4)【答案】(C)【解析】这是讨论与敛散性的问题.是交错级数,显然单调下降趋于零,由莱布尼兹判别法知,该级数收敛.正项级数中,.根据正项级数的比较判别法以及发散,发散.因此,应选(C).【相关知识点】正项级数的比较判别法:设和都是正项级数,且则⑴当时,和同时收敛或同时发散;⑵当时,若收敛,则收敛;若发散,则发散;⑶当时,若收敛,则收敛;若发散,则发散.(5)【答案】(C)【解析】是交换单位矩阵的第一、二行所得初等矩阵,是将单位矩阵的第一行加到第三行所得初等矩阵;而是由先将第一
7、行加到第三行,然后再交换第一、二行两次初等交换得到的,因此,故应选(C).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】这实质上已经变成了由方程式确定的隐函数的求导与带抽象函数记号的复合函数求导相结合的问题.先由方程式,其中确定,并求.将方程两边对求导得,解得.①现再将对求导,其中,,可得.将①式代入得.【相关知识点】多元复合函数求导法则:如果函数都在点具有对及对的偏导数,函数在对应点具有连续偏导数,则复合函数在点的两个偏导数存在,且有;.(2)【解析】方法一:用重积分的方法.将累次积分表成二重积分,其中如右图所示.交换积分次序
8、.由于定积分与积分变量无关,改写成..方法二:用分部积分法.注意,将累次积分写成四、(本题共2小题,每小题6分,满分12分.)(1)【解析】将曲面积分化为二重积分.