资源描述:
《用A算法解决十五数码问题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一、15数码问题的描述及其状态空间法表示(1)15数码问题描述15数码问题又叫移棋盘问题,是人工智能中的一个经典问题。所谓的15数码问题:就是在一个4×4的16宫格棋盘上,摆放有15个将牌,每一个将牌都刻有1~15中的某一个数码。棋盘中留有一个空格,允许其周围的某一个将牌向空格移动,这样通过移动将牌就可以不断改变将牌的布局。这种求解的问题是:给定一种初始的将牌布局或结构(称初始状态)和一个目标布局(称目标状态),问如何移动数码,实现从初始状态到目标状态的转变,如图1所示。问题的实质就是寻找一个合法的动作序列512114136310
2、142791158123456789101112131415(a)初始状态(b)目标状态图115数码问题的一个实例(2)状态空间法表示人工智能问题的求解是以知识表示为基础的。如何将已获得的有关知识以计算机内部代码形式加以合理地描述、存储、有效地利用便是表示应解决的问题[1]。目前的知识表示方法有十余种,如:一阶谓词逻辑表示法、产生式表示法、状态空间表示法、语义网格表示法、框架表示法、脚本表示法、面向对象表示法等。任何一个给定的问题可能存在多种知识表示方法,人们可以根据待求解问题的领域知识选择适当的知识表示方法。这里我们只强调状态空
3、间表示法。把求解的问题表示成问题状态、操作、约束、初始状态和目标状态。状态空间就是所有可能的状态的集合。求解一个问题就是从初始状态出发,不断应用可应用的操作,在满足约束的条件下达到目标状态。问题求解过程就可以看成是问题状态在状态空间的移动。状态是为描述某类不同事物间的差别而引入的一组最少变量q0,q1,…,qn的有序集合。问题的状态空间是一个表示该问题全部可能状态及其关系的图。记为三元状态(S、F、G),其中S所有可能的问题初始状态集合,F操作符集合,G目标状态集合。十五数码的状态空间法:初始状态S[4][4]={5,12,11,
4、4,13,6,3,10,14,2,7,9,1,15,0,8};(0表示空格)目标状态G[4][4]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0};操作符集合F={空格上移,空格下移,空格左移,空格右移}状态空间的一个解:是一个有限的操作算子序列,它使初始状态转化为目标状态:S0-f1->S1-f2->...fk->G。二、A*算法的基本原理、算法步骤、流程图(1)A*算法基本原理A*算法是一种有序搜索算法,其特点在于对评价函数的定义上。对于一般的有序搜索,总是选择f值最小的节点作为扩展节点。因此,
5、f是根据需要找到一条最小代价路径的观点来估算节点的,可考虑将每个节点n的估价函数值分解为两个分量:从起始节点到节点n的最小代价路径的代价与从节点n到目标节点的最小代价路径的代价之和,也就是说f(n)是约束通过节点n的一条最小代价路径的代价的一个估计。再定义一个函数f*,使得在任意一个节点n上的函数值f*(n)就是从节点S到节点n的一条最佳路径的实际代价加上从节点n到目标节点的一条最佳路径的代价之和,即:f*(n)=g*(n)+h*(n)评价函数f是f*的一个估计,这个估计可由下式给出:f(n)=g(n)+h(n)其中g是g*的估计
6、,h是h*的估计。g*(n)的估计g(n)就是搜索树中从初始节点到当前节点n的这段路径的代价,这一代价可以由从初始节点到当前节点n寻找路径时,把遇到的各段路径的代价加起来给出。h*(n)的估计h(n)依赖于有关问题的领域的启发信息,于是被称作启发函数。在启发函数中,应用的启发信息(问题知识)越多,扩展的节点就越少,这样就能更快地搜索到目标节点。(2)A*算法基本步骤1)生成一个只包含开始节点n0的搜索图G,把n0放在一个叫OPEN的列表上。2)生成一个列表CLOSED,它的初始值为空。3)如果OPEN表为空,则失败退出。4)选择O
7、PEN上的第一个节点,把它从OPEN中移入CLPSED,称该节点为n。5)如果n是目标节点,顺着G中,从n到n0的指针找到一条路径,获得解决方案,成功退出(该指针定义了一个搜索树,在第7步建立)。6)扩展节点n,生成其后继结点集M,在G中,n的祖先不能在M中。在G中安置M的成员,使他们成为n的后继。7)从M的每一个不在G中的成员建立一个指向n的指针(例如,既不在OPEN中,也不在CLOSED中)。把M1的这些成员加到OPEN中。对M的每一个已在OPEN中或CLOSED中的成员m,如果到目前为止找到的到达m的最好路径通过n,就把它的
8、指针指向n。对已在CLOSED中的M的每一个成员,重定向它在G中的每一个后继,以使它们顺着到目前为止发现的最好路径指向它们的祖先。8)按递增f*值,重排OPEN(相同最小f*值可根据搜索树中的最深节点来解决)。9)返回第3步。在第7步中,如果搜索过