A universal dimension formula for complex simple Lie algebras.pdf

A universal dimension formula for complex simple Lie algebras.pdf

ID:49865428

大小:273.86 KB

页数:20页

时间:2020-03-05

A universal dimension formula for complex simple Lie algebras.pdf_第1页
A universal dimension formula for complex simple Lie algebras.pdf_第2页
A universal dimension formula for complex simple Lie algebras.pdf_第3页
A universal dimension formula for complex simple Lie algebras.pdf_第4页
A universal dimension formula for complex simple Lie algebras.pdf_第5页
资源描述:

《A universal dimension formula for complex simple Lie algebras.pdf》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、1AUNIVERSALDIMENSIONFORMULAFORCOMPLEXSIMPLELIEALGEBRAS1J.M.LANDSBERGANDL.MANIVELAbstract.WepresentauniversalformulaforthedimensionoftheCartanpowersoftheadjointrepresentationofacomplexsimpleLiealgebra(i.e.,auniversalformulafortheHilbertfunctionsofhomogeneousc

2、omplexcontactmanifolds),aswellasseveralotheruniversalformulas.TheseformulasgeneralizeformulasofVogelandDeligneandaregivenintermsofrationalfunctionswhereboththenumeratoranddenominatordecomposeintoproductsoflinearfactorswithintegercoefficients.Wediscussconsequen

3、cesoftheformulasincludingarelationwithScorzavarieties.1.StatementofthemainresultVogel[17]definedatensorcategoryD′intendedtobeamodelforauniversalsimpleLiealgebra.Hismotivationcamefromknottheory,asD′wasdesignedtosurjectontothecategoryofVassilievinvariants.While

4、Vogel’sworkremainsunfinished(andunpublished),italreadyhasconsequencesforrepresentationtheory.LetgbeacomplexsimpleLiealgebra.VogelderivedauniversaldecompositionofS2ginto(possiblyvirtual)Casimireigenspaces,S2g=C⊕Y2(α)⊕Y2(β)⊕Y2(γ)whichturnsouttobeadecompositioni

5、ntoirreduciblemodules.Ifwelet2tdenotetheCasimireigenvalueoftheadjointrepresentation(withrespecttosomeinvariantquadraticform),thesemodulesrespectivelyhaveCasimireigenvalues4t−2α,4t−2β,4t−2γ,whichwemaytakeasthedefinitionsofα,β,γ.Vogelshowedthatt=α+β+γ.Hethenwen

6、tontofindCasimireigenspacesY3(α),Y3(β),Y3(γ)⊂S3gwitheigenvalues6t−6α,6t−6β,6t−6γ(whichagainturnouttobeirreducible),andcomputedtheirdimensionsthroughdifficultdiagrammaticcomputationsandthehelpofMaple[17]:(α−2t)(β−2t)(γ−2t)dimg=,αβγt(β−2t)(γ−2t)(β+t)(γ+t)(3α−2t)d

7、imY2(α)=−.α2βγ(α−β)(α−γ)t(α−2t)(β−2t)(γ−2t)(β+t)(γ+t)(t+β−α)(t+γ−α)(5α−2t)dimY3(α)=−,α3βγ(α−β)(α−γ)(2α−β)(2α−γ)arXiv:math/0401296v2[math.RT]1Feb2005andtheformulasforY2(β),Y2(γ)andY3(β),Y3(γ)areobtainedbypermutingα,β,γ.Theseformulassuggestacompletelydifferentp

8、erspectivefromtheusualdescriptionofthesimpleLiealgebrasbytheirrootsystemsandtheWeyldimensionformulathatcanbededucedforeachparticularsimpleLiealgebra.TheworkofVogelraisesmanyquestions.Inparticula

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。