欢迎来到天天文库
浏览记录
ID:49627282
大小:564.50 KB
页数:15页
时间:2020-02-26
《平行四边形的对角线的特征.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18.1.1平行四边形的性质第十八章平行四边形第2课时平行四边形的对角线的特征情境引入学习目标1.平行四边形对角线互相平分的探究与应用.(重点)2.综合运用平行四边形的性质解决问题.(难点)导入新课分地故事一位饱经沧桑的老人,经过一辈子的辛勤劳动,到晚年的时候候,终于拥有了一块平行四边的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的:当四个孩子看到时,争论不休,都认为自己分的地少,同学们,你认为老人这样分合理吗?为什么?讲授新课平行四边形的对角线的性质一我们知道平行四边形的边角这两个基本要素的性质,那么平行四边形的对角线又具有怎样的性质
2、呢?ABCDO如图,在□ABCD中,连接AC,BD,并设它们相交于点O.OA与OC,OB与OD有什么关系?猜一猜OA=OC,OB=ODABCDO量一量拿出手中的平行四边形纸片,测量出四条线段的长度,验证你的猜想是否正确?验一验几何画板验证证一证已知:如图:□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴OA=OC,OB=OD.ACDBO32411.△ABO≌△CDO,△AOD≌△COB,△ABD≌△CDB,△ABC
3、≌△CDA;2.△ABO、△AOD、△DOC、△COB的面积相等,且都等于平行四边形面积的四分之一.ACDBO平行四边形的对角线互相平分.要点归纳平行四边形的性质重要结论应用格式:典例精析例1在□ABCD中,AC与BD交于点O,OA=12cm,OB=19cm,则AC=cm,BD=cm.BCDAO2439398变式3在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是.A.244、三角形.又OA=OC,例3老人分地合理吗?答:老人分地合理.由前面可知,老大与老三,老二与老四的(三角形)地全等.老大与老二的(三角形)地面积相等,因为三角形的中线把原三角形分成面积相等的两部分.当堂练习1.如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10B.14C.20D.22BBCDAO2.下列性质中,平行四边形不一定具备的是()A.对边相等B.对角相等C.对角线互相平分D.是轴对称图形D3.如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,5、则BC的长为.10ABCDEF4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,则BD的长是.□5.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.求证:BE=DF.证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.∵E,F分别是OA,OC的中点,ABCDOEF课堂小结平行四边形定义两组对边分别平行的四边形性质两组对边分别平行,相等.两条平行线间的距离相等两组对角分别相等,邻角互补.两条对角线互相平分.
4、三角形.又OA=OC,例3老人分地合理吗?答:老人分地合理.由前面可知,老大与老三,老二与老四的(三角形)地全等.老大与老二的(三角形)地面积相等,因为三角形的中线把原三角形分成面积相等的两部分.当堂练习1.如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10B.14C.20D.22BBCDAO2.下列性质中,平行四边形不一定具备的是()A.对边相等B.对角相等C.对角线互相平分D.是轴对称图形D3.如图,在ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,
5、则BC的长为.10ABCDEF4.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AB⊥AC,AB=3,AD=5,则BD的长是.□5.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF.求证:BE=DF.证明:∵四边形ABCD是平行四边形,对角线AC、BD交于点O,∴OB=OD,OA=OC.∵E,F分别是OA,OC的中点,ABCDOEF课堂小结平行四边形定义两组对边分别平行的四边形性质两组对边分别平行,相等.两条平行线间的距离相等两组对角分别相等,邻角互补.两条对角线互相平分.
此文档下载收益归作者所有