欢迎来到天天文库
浏览记录
ID:49479786
大小:710.00 KB
页数:9页
时间:2020-02-25
《(课件3)272相似三角形.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、27.2.1相似三角形的判定观察两副三角尺如图,其中同样角度(30°与60°,或45°与45°)的两个三角尺大小可能不同,但它们看起来是相似的.一般地,如果两个三角形有两组对应角相等,它们一定相似吗?一定相似观察作△ABC和△A'B'C',使得∠A=∠A',∠B=∠B',这时它们的第三个角满足∠C=∠C'吗?分别度量这两个三角形的边长,计算,你有什么现?探究ABCA'B'C'满足:∠C=∠C'△ABC∽△A'B'C'探究把你的结果与邻座的同学比较,你们的结论一样吗?△ABC和△A'B'C'相似吗?一样△ABC和△A'B'C'相似得到判定两个三角形相似的又一个简便方法:如果一个三角形的两个角与
2、另一个三角形的两个角对应相等,那么这两个三角形相似.如图,已知△ABC和△A'B'C'中,∠A=∠A',∠B=∠B',求证:△ABC∽△A'B'C'证明:在△ABC的边AB(或延长线)上,截取AD=A'B',过点D作DE//BC,交AC于点E,则有△ADE∽△ABC∵∠ADE=∠B,∠B=∠B'∴∠ADE=∠B'又∵∠A=∠A',AD=A'B'∴△ADE≌△A'B'C'∴△A'B'C'∽△ABCABCDEA'B'C'例2如图,弦AB和CD相交于⊙O内一点P,求证PA·PB=PC·PD证明:连接AC、BD.∵∠A和∠D都是所对的圆周角,∴∠A=∠D同理∠C=∠B∴△PAC∽△PDB即PA·PB
3、=PC·PD·ABCDOP1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.BACB'A'C'已知:等腰△ABCAB=AC和等腰△A'B'C',A'B'=A'C'且有∠B=∠B',求证:△ABC∽△A'B'C'证明:∵等腰三角形AB=AC∴∠B=∠C∴△ABC∽△A'B'C'∵等腰三角形A'B'=A'C'∴∠B'=∠C'∵∠B=∠B',∴∠C=∠C'练习已知:第腰△ABC有AB=AC和△A'B'C'有A'B'=A'C',并且∠A=∠A',求证:△ABC∽△A'B'C'证明:∵△ABC中AB=AC,∠B=∠C∴2∠B=180°-∠A同理△A'B'C'中A'B'=A
4、'C',∠B'=∠C'∴2∠B'=180°-∠A'又∠A=∠A'∵∠B=∠B',∵△ABC∽△A'B'C'BACB'A'C'2.如图,Rt△ABC中,CD是斜边上的高,△ACD和△CBD都和△ABC相似吗?证明你的结论.ABCD12△ACD∽△ABC△CBD∽△ABC证明:∵∠ACB=∠ADC=90°又∠A=∠A=90°∴△ACD∽△ABC∵∠CDB=∠ACB=90°∠B=∠B=90°∴△CBD∽△ABC
此文档下载收益归作者所有