chap4图像增强-partI.ppt

chap4图像增强-partI.ppt

ID:49284800

大小:2.22 MB

页数:23页

时间:2020-02-03

chap4图像增强-partI.ppt_第1页
chap4图像增强-partI.ppt_第2页
chap4图像增强-partI.ppt_第3页
chap4图像增强-partI.ppt_第4页
chap4图像增强-partI.ppt_第5页
资源描述:

《chap4图像增强-partI.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第四章  图像增强图像增强是采用一系列技术去改善图像的视觉效果,或将图像转换成一种更适合于人或机器进行分析和处理的形式。例如采用一系列技术有选择地突出某些感兴趣的信息,同时抑制一些不需要的信息,提高图像的使用价值。图像增强方法从增强的作用域出发,可分为空间域增强和频率域增强两种。空间域增强是直接对图像各像素进行处理;频率域增强是对图像经傅立叶变换后的频谱成分进行处理,然后逆傅立叶变换获得所需的图像。讲解内容目的1.熟悉并掌握本章基本概念、空间域图像增强的原理、方法及其特点;2.了解频率域图像增强的方法及其实现过程;3.重点掌

2、握直方图修正方法、特点及其应用;空间域平滑、锐化和彩色增强技术。4.1图像增强的点运算4.1.2灰度变换灰度变换可调整图像的灰度动态范围或图像对比度,是图像增强的重要手段之一。黑白1.线性变换令图像f(i,j)的灰度范围为[a,b],线性变换后图像g(i,j)的范围为[a´,b´],如图,g(i,j)与f(i,j)之间的关系式为:在曝光不足或过度的情况下,图像灰度可能会局限在一个很小的范围内。这时在显示器上看到的将是一个模糊不清、似乎没有灰度层次的图像。下图是对曝光不足的图像采用线性变换对图像每一个像素灰度作线性拉伸。可有效

3、地改善图像视觉效果。2.分段线性变换为了突出感兴趣目标所在的灰度区间,相对抑制那些不感兴趣的灰度区间,可采用分段线性变换。设原图像f(x,y)在[0,Mf],感兴趣目标的灰度范围在[a,b],欲使其灰度范围拉伸到[c,d],则对应的分段线性变换表达式为通过细心调整折线拐点的位置及控制分段直线的斜率,可对任一灰度区间进行拉伸或压缩。3.非线性灰度变换当用某些非线性函数如对数函数、指数函数等,作为映射函数时,可实现图像灰度的非线性变换。①对数变换对数变换的一般表达式为这里a,b,c是为了调整曲线的位置和形状而引入的参数。当希望对

4、图像的低灰度区较大的拉伸而对高灰度区压缩时,可采用这种变换,它能使图像灰度分布与人的视觉特性相匹配。f(i,j)g(i,j)②指数变换指数变换的一般表达式为这里参数a,b,c用来调整曲线的位置和形状。这种变换能对图像的高灰度区给予较大的拉伸。g(i,j)f(i,j)4.1.3直方图修整法灰度直方图反映了数字图像中每一灰度级与其出现频率间的关系,它能描述该图像的概貌。通过修改直方图的方法增强图像是一种实用而有效的处理技术。直方图修整法包括直方图均衡化及直方图规定化两类。1.直方图均衡化直方图均衡化是将原图像通过某种变换,得到一

5、幅灰度直方图为均匀分布的新图像的方法。直方图均衡化下面先讨论连续变化图像的均衡化问题,然后推广到离散的数字图像上。设r和s分别表示归一化了的原图像灰度和经直方图修正后的图像灰度。即(4.1-9)在[0,1]区间内的任一个r值,都可产生一个s值,且(4.1-10)T(r)作为变换函数,满足下列条件:①在0≤r≤1内为单调递增函数,保证灰度级从黑到白的次序不变;②在0≤r≤1内,有0≤T(r)≤1,确保映射后的像素灰度在允许的范围内。反变换关系为(4.1-11)T-1(s)对s同样满足上述两个条件。由概率论理论可知,如果已知随机

6、变量r的概率密度为pr(r),而随机变量s是r的函数,则s的概率密度ps(s)可以由pr(r)求出。假定随机变量s的分布函数用Fs(s)表示,根据分布函数定义利用密度函数是分布函数的导数的关系,等式两边对s求导,有:(4.1-13)可见,输出图像的概率密度函数可以通过变换函数T(r)控制原图像灰度级的概率密度函数得到,因而改善原图像的灰度层次,这就是直方图修改技术的基础。从人眼视觉特性来考虑,一幅图像的直方图如果是均匀分布的,即Ps(s)=k(归一化时k=1)时,该图像色调给人的感觉比较协调。因此将原图像直方图通过T(r)调

7、整为均匀分布的直方图,这样修正后的图像能满足人眼视觉要求。因为归一化假定由(4.1-13)则有两边积分得上式表明,当变换函数为r的累积直方图函数时,能达到直方图均衡化的目的。对于离散的数字图像,用频率来代替概率,则变换函数T(rk)的离散形式可表示为:上式表明,均衡后各像素的灰度值sk可直接由原图像的直方图算出。一幅图像的sk与rk之间的关系称为该图像的累积灰度直方图。rkPr(rk)rkS(rk)1.01.01.0下面举例说明直方图均衡过程。rknkpr(rk)=nk/nsk计sk并sknskpk(s)r0=07900.1

8、90.191/7s0=1/77900.19r1=1/710230.250.443/7s1=3/710230.25r2=2/78500.210.655/7s2=5/78500.21r3=3/76560.160.816/7r4=4/73290.080.896/7s3=6/79850.24r5=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。