模式识别 第6章 模式特征的选择与提取.ppt

模式识别 第6章 模式特征的选择与提取.ppt

ID:49244083

大小:346.51 KB

页数:31页

时间:2020-02-01

模式识别 第6章 模式特征的选择与提取.ppt_第1页
模式识别 第6章 模式特征的选择与提取.ppt_第2页
模式识别 第6章 模式特征的选择与提取.ppt_第3页
模式识别 第6章 模式特征的选择与提取.ppt_第4页
模式识别 第6章 模式特征的选择与提取.ppt_第5页
资源描述:

《模式识别 第6章 模式特征的选择与提取.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、武汉大学电子信息学院IPL第六章模式特征的选择与提取模式识别与神经网络PatternRecognitionand NeuralNetwork内容目录IPL第六章模式特征的选择与提取6.1引言32456.2类别可分离性判据6.3特征提取与K-L变换6.4特征的选择6.5讨论1模式识别与神经网络6.1引言特征的选择与提取是模式识别中重要而困难的一个环节:分析各种特征的有效性并选出最有代表性的特征是模式识别的关键一步降低特征维数在很多情况下是有效设计分类器的重要课题三大类特征:物理、结构和数学特征物理和结构特征:易于为人的直觉感知,但有时难于定量描述,因而不易

2、用于机器判别数学特征:易于用机器定量描述和判别,如基于统计的特征3第六章模式特征的选择与提取特征的形成特征形成(acquisition):信号获取或测量→原始测量原始特征实例:数字图象中的各像素灰度值人体的各种生理指标原始特征分析:原始测量不能反映对象本质高维原始特征不利于分类器设计:计算量大,冗余,样本分布十分稀疏引言4第六章模式特征的选择与提取特征的选择与提取两类提取有效信息、压缩特征空间的方法:特征提取和特征选择特征提取(extraction):用映射(或变换)的方法把原始特征变换为较少的新特征特征选择(selection):从原始特征中挑选出一些

3、最有代表性,分类性能最好的特征特征的选择与提取与具体问题有很大关系,目前没有理论能给出对任何问题都有效的特征选择与提取方法引言5第六章模式特征的选择与提取特征的选择与提取举例细胞自动识别:原始测量:(正常与异常)细胞的数字图像原始特征(特征的形成,找到一组代表细胞性质的特征):细胞面积,胞核面积,形状系数,光密度,核内纹理,和浆比压缩特征:原始特征的维数仍很高,需压缩以便于分类特征选择:挑选最有分类信息的特征特征提取:数学变换傅立叶变换或小波变换用PCA方法作特征压缩引言6第六章模式特征的选择与提取6.2类别可分离性判据类别可分离性判据:衡量不同特征及其

4、组合对分类是否有效的定量准则理想准则:某组特征使分类器错误概率最小实际的类别可分离性判据应满足的条件:度量特性:与错误率有单调关系当特征独立时有可加性:单调性:常见类别可分离性判据:基于距离、概率分布、熵函数7第六章模式特征的选择与提取基于距离的可分性判据类间可分性:=所有样本间的平均距离:可分性判据(8-1)squaredEuclidian(8-5)类内平均距离类间距离(8-6)8第六章模式特征的选择与提取基于距离的可分性判据矩阵形式可分性判据基于距离的准则概念直观,计算方便,但与错误率没有直接联系样本类间 离散度矩阵样本类内 离散度矩阵类间可分离性判

5、据9第六章模式特征的选择与提取基于概率的可分性判据基于概率的可分性判据:用概率密度函数间的距离来度量可分性判据散度:10第六章模式特征的选择与提取正态分布的散度可分性判据Mahalanobis11第六章模式特征的选择与提取基于熵函数的可分性判据熵函数:可分性判据Shannon熵:平方熵:熵函数期望表征类别的分离程度:12第六章模式特征的选择与提取类别可分离性判据应用举例图像分割:Otsu灰度图像阈值算法(Otsuthresholding)图像有L阶灰度,ni是灰度为i的像素数,图像总像素数N=n1+n2+…+nL灰度为i的像素概率:pi=ni/N类间方差

6、:可分性判据13第六章模式特征的选择与提取Otsuthresholding灰度图像阈值:可分性判据Otsu灰度图像二值化算法演示及程序分析:14第六章模式特征的选择与提取6.3特征提取与K-L变换特征提取:用映射(或变换)的方法把原始特征变换为较少的新特征PCA(PrincipleComponentAnalysis)方法: 进行特征降维变换,不能完全地表示原有的对象,能量总会有损失。希望找到一种能量最为集中的的变换方法使损失最小K-L(Karhunen-Loeve)变换:最优正交线性变换,相应的特征提取方法被称为PCA方法15第六章模式特征的选择与提取K

7、-L变换离散K-L变换:对向量x用确定的完备正交归一向量系uj展开特征 提取16第六章模式特征的选择与提取离散K-L变换的均方误差用有限项估计x:特征 提取该估计的均方误差:17第六章模式特征的选择与提取求解最小均方误差正交基用Lagrange乘子法:特征 提取结论:以相关矩阵R的d个本征向量为基向量来展开x时,其均方误差为:K-L变换:当取矩阵R的d个最大本征值对应的本征向量来展开x时,其截断均方误差最小。这d个本征向量组成的正交坐标系称作x所在的D维空间的d维K-L变换坐标系,x在K-L坐标系上的展开系数向量y称作x的K-L变换18第六章模式特征的选

8、择与提取K-L变换的表示K-L变换的向量展开表示:特征 提取K-L变换的矩阵表示

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。