欢迎来到天天文库
浏览记录
ID:49189304
大小:50.00 KB
页数:5页
时间:2020-02-29
《弧长和扇形面积教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.4弧长和扇形面积(1)教案延津县西街中学原海教学目标 通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用这些公式解决一些题目. 重难点、关键 1.重点:n°的圆心角所对的弧长L=,扇形面积=及其它们的应用. 2.难点:两个公式的应用. 3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教具、学具准备 小黑板、圆规、直尺、量角器、纸板. 教学过程 一、复习引入 (老师口问,学生口答)请同学们回答下列
2、问题. 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长? 老师点评:(1)圆的周长C=2πR (2)圆的面积S图= (3)弧长就是圆的一部分. 二、探索新知 (小黑板)请同学们独立完成下题:设圆的半径为R,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_____
3、__. …… 5.n°的圆心角所对的弧长是_______. (老师点评)根据同学们的解题过程,我们可得到: n°的圆心角所对的弧长为例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm) 分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm,n=110 ∴的长==≈76.8(mm) 因此,管道的展直长度约为76.8mm.问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上
4、拴着一条长5m的绳子,绳子的另一端拴着一头牛,如图所示: (1)这头牛吃草的最大活动区域有多大? (2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大? 学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积.(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径与n°圆心角所对的弧所围成的圆的一部分的图形,如图: 像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. (小黑板
5、),请同学们结合圆心面积S=的公式,独立完成下题: 1.该图的面积可以看作是_______度的圆心角所对的扇形的面积. 2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______. 3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______. 4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______. …… 5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______. 因此:在半径为R的圆中,圆心角n°的扇形S扇形=例2
6、 .如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1).解:略. 三、巩固练习 课本P112练习. 四、应用拓展1.变式:如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积。(精确到0.01cm)。0弓形的面积=S扇+S△2、如图,⊙A、⊙B、⊙C、⊙D两两不相交,且半径都是2cm,求图中阴影部分的面积。3.已知正三角形ABC的边长为a,分别以A、B、C为圆心,以a/2为半径
7、的圆相切于点D、E、F,求图中阴影部分的面积S. 五、归纳小结(学生小结,老师点评) 本节课应掌握: 1.n°的圆心角所对的弧长L= 2.扇形的概念. 3.圆心角为n°的扇形面积是S扇形= 4.运用以上内容,解决具体问题. 六、布置作业 1.教材P114 复习巩固1、2、3 P115 综合运用5、6、7.
此文档下载收益归作者所有