欢迎来到天天文库
浏览记录
ID:49080637
大小:458.00 KB
页数:21页
时间:2020-02-28
《中考解析版试卷分类汇编(第期)多边形与平行四边形.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、多边形与平行四边形一、选择题1.(2016·浙江省绍兴市·4分)小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A.①,②B.①,④C.③,④D.②,③【考点】平行四边形的判定.【分析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题.【解答】解:∵只有②③两块角的两边互相平行,角的两边的延长线的交点就是平行四边形的顶点,∴带②③两块碎玻璃,就可以确定平行四边形的大小.故选D.2.(2016贵州毕节3分)下列语句正确的是( )A.对角线互相垂直的四边形是菱形B.有两边及一角
2、对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.3.(2016·辽宁丹东·3分)如图,在▱ABCD中,BF平分∠AB
3、C,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )A.8B.10C.12D.14【考点】平行四边形的性质.【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=6,同理可证DE=DC=6,再由EF的长,即可求出BC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.4.(201
4、6·四川泸州)如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.22【考点】平行四边形的性质.【分析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,DC=AB=6,∵AC+BD=16,∴AO+BO=8,∴△ABO的周长是:14.故选:B.一、填空题1.(2016河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为 110° .【考点
5、】平行四边形的性质.【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.2.(2016·陕西·3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是 8 .B.运用科学计算器计算:3sin73
6、°52′≈ 11.9 .(结果精确到0.1)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方;多边形内角与外角.【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.93.(2016·山东省东营市·3分)如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值
7、是_____________.【知识点】直线射线和线段——垂线段最短、图形的相似——平行线分线段成比例定理、平行四边形——平行四边形的性质、【答案】4.【解析】根据“垂线段最短”,可知:当OD⊥BC时,OD最短,DE的值最小.当OD⊥BC时,OD∥AB.∴==1.∴OD是△ABC的中位线.∴OD=AB=2.∴DE的最小值=2OD=4.【点拨】将求DE的最小值转化为求DO的最小值,DO的最小值就是点D到BC的距离,由此可解.4.(2016·青海西宁·2分)一个多边形的内角和是外角和的2倍,则这
此文档下载收益归作者所有