课题集合间的基本关系.doc

课题集合间的基本关系.doc

ID:48961078

大小:58.69 KB

页数:2页

时间:2020-02-26

课题集合间的基本关系.doc_第1页
课题集合间的基本关系.doc_第2页
资源描述:

《课题集合间的基本关系.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:§1.2集合间的基本关系教材分析:类比实数的大小关系引入集合的包含与相等关系了解空集的含义课型:新授课教学目的:(1)了解集合之间的包含、相等关系的含义;(2)理解子集、真子集的概念;(3)能利用Venn图表达集合间的关系;(4)了解与空集的含义。教学重点:子集与空集的概念;用Venn图表达集合间的关系。教学难点:弄清元素与子集、属于与包含之间的区别;教学过程:一、引入课题1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0N;(2)Q;(3)-1.5R2、类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢

2、?(宣布课题)二、新课教学(一)集合与集合之间的“包含”关系;A={1,2,3},B={1,2,3,4}集合A是集合B的部分元素构成的集合,我们说集合B包含集合A;如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。记作:读作:A包含于(iscontainedin)B,或B包含(contains)A当集合A不包含于集合B时,记作AB用Venn图表示两个集合间的“包含”关系BA(二)集合与集合之间的“相等”关系;,则中的元素是一样的,因此即练习结论:任何一个集合是它本身的子集(三)真子集的概念若集

3、合,存在元素,则称集合A是集合B的真子集(propersubset)。记作:AB(或BA)读作:A真包含于B(或B真包含A)举例(由学生举例,共同辨析)(一)空集的概念(实例引入空集概念)不含有任何元素的集合称为空集(emptyset),记作:规定:空集是任何集合的子集,是任何非空集合的真子集。(二)结论:,且,则(三)例题(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。(2)化简集合A={x

4、x-3>2},B={x

5、x5},并表示A、B的关系;(四)课堂练习(五)归纳小结,强化思想两个集合之间的基本关系只有“包含”与“相等”两种,可

6、类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;(六)作业布置1、书面作业:习题1.1第5题2、提高作业:已知集合,≥,且满足,求实数的取值范围。设集合,,试用Venn图表示它们之间的关系。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。