欢迎来到天天文库
浏览记录
ID:48928093
大小:683.50 KB
页数:7页
时间:2020-02-25
《高中数学人教版选修1-2课时提升作业四 2.1.2 演绎推理 精讲优练课型 Word版含答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、经典小初高讲义温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业四 演绎推理一、选择题(每小题5分,共25分)1.(2016·滨州高二检测)“三段论”①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③这艘船是准时起航的,其中的大前提是( )A.①B.②C.①②D.③【解析】选A.由演绎推理可知,①是大前提.2.(2016·福州高二检测)“所有金属都能导电,铁是金属,所有铁能导电”这种推理方法属于 ( )A.演绎推理B.类比推理C.合情推理D.归纳推理
2、【解析】选A.由题意知,这种推理包含有大前提、小前提、结论,是演绎推理.3.(2016·聊城高二检测)“所有9的倍数都是3的倍数,某奇数是9的倍数,故该奇数是3的倍数.”上述推理 ( )A.小前提错误B.结论错误C.正确D.大前提错误【解析】选C.因为9是3的倍数,所以某奇数是9的倍数,它一定是3的倍数.4.(2016·大同高二检测)函数y=xcosx-sinx在下列哪个区间内是增函数 ( )A.B.C.D.(2π,3π)【解析】选B.y′=cosx+x(-sinx)-cosx=-xsinx>0,由选项知x>0,所以sinx<0,故π3、(2016·三明高二检测)观察(x2)′=2x,(x4)′=4x3,(cosx)′小初高优秀教案经典小初高讲义=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= ( )A.f(x)B.-f(x)C.g(x)D.-g(x)【解析】选D.由给出的例子可以归纳推理得出:若函数f(x)是偶函数,则它的导函数是奇函数,因为定义在R上的函数f(x)满足f(-x)=f(x),即函数f(x)是偶函数,所以它的导函数是奇函数,即有g(-x)=-g(x).二、填空题(每小题5分,共15分)6.(24、016·大连高二检测)若不等式ax2+2ax+2<0的解集为,则实数a的取值范围为________.【解析】①a=0时,不等式变为2<0,显然此不等式解集为.②a≠0时,需有即解得05、是奇函数,且在x=0处有定义,即f(0)=0.即a-=0,得a=.答案:三、解答题(每小题10分,共20分)9.把下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,(22015+1)是奇数,所以(22015+1)不能被2整除.小初高优秀教案经典小初高讲义(2)三角函数都是周期函数,y=tanα是三角函数,因此y=tanα是周期函数;(3)因为△ABC三边的长依次为3,4,5,所以△ABC是直角三角形.【解析】(1)一切奇数都不能被2整除,……………………………………大前提22015+1是奇数,…………………………………………………………………小6、前提22015+1不能被2整除.…………………………………………………………结论(2)三角函数都是周期函数,…………………………………………………大前提y=tanα是三角函数.…………………………………………………………小前提y=tanα是周期函数.…………………………………………………………结论(3)一条边的平方等于其他两条边平方和的三角形是直角三角形,…大前提△ABC三边的长依次为3,4,5,且32+42=52,…………………………………………………………………小前提△ABC是直角三角形.………………………………………………………结论10.(20167、·南京高二检测)设m为实数,利用三段论证明方程x2-2mx+m-1=0有两个相异实根.【证明】因为如果一元二次方程ax2+bx+c=0(a≠0)的判别式Δ=b2-4ac>0,那么方程有两个相异实根.…………………………………………………大前提Δ=(-2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,………………………………小前提所以方程x2-2mx+m-1=0有两个相异实根.……………………………………………………………………………………结论一、选择题(每小题5分,共10分)1.(2016·鞍山高二检测)有一段演绎推理是这样的:“若一直线8、平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直
3、(2016·三明高二检测)观察(x2)′=2x,(x4)′=4x3,(cosx)′小初高优秀教案经典小初高讲义=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)= ( )A.f(x)B.-f(x)C.g(x)D.-g(x)【解析】选D.由给出的例子可以归纳推理得出:若函数f(x)是偶函数,则它的导函数是奇函数,因为定义在R上的函数f(x)满足f(-x)=f(x),即函数f(x)是偶函数,所以它的导函数是奇函数,即有g(-x)=-g(x).二、填空题(每小题5分,共15分)6.(2
4、016·大连高二检测)若不等式ax2+2ax+2<0的解集为,则实数a的取值范围为________.【解析】①a=0时,不等式变为2<0,显然此不等式解集为.②a≠0时,需有即解得05、是奇函数,且在x=0处有定义,即f(0)=0.即a-=0,得a=.答案:三、解答题(每小题10分,共20分)9.把下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,(22015+1)是奇数,所以(22015+1)不能被2整除.小初高优秀教案经典小初高讲义(2)三角函数都是周期函数,y=tanα是三角函数,因此y=tanα是周期函数;(3)因为△ABC三边的长依次为3,4,5,所以△ABC是直角三角形.【解析】(1)一切奇数都不能被2整除,……………………………………大前提22015+1是奇数,…………………………………………………………………小6、前提22015+1不能被2整除.…………………………………………………………结论(2)三角函数都是周期函数,…………………………………………………大前提y=tanα是三角函数.…………………………………………………………小前提y=tanα是周期函数.…………………………………………………………结论(3)一条边的平方等于其他两条边平方和的三角形是直角三角形,…大前提△ABC三边的长依次为3,4,5,且32+42=52,…………………………………………………………………小前提△ABC是直角三角形.………………………………………………………结论10.(20167、·南京高二检测)设m为实数,利用三段论证明方程x2-2mx+m-1=0有两个相异实根.【证明】因为如果一元二次方程ax2+bx+c=0(a≠0)的判别式Δ=b2-4ac>0,那么方程有两个相异实根.…………………………………………………大前提Δ=(-2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,………………………………小前提所以方程x2-2mx+m-1=0有两个相异实根.……………………………………………………………………………………结论一、选择题(每小题5分,共10分)1.(2016·鞍山高二检测)有一段演绎推理是这样的:“若一直线8、平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直
5、是奇函数,且在x=0处有定义,即f(0)=0.即a-=0,得a=.答案:三、解答题(每小题10分,共20分)9.把下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,(22015+1)是奇数,所以(22015+1)不能被2整除.小初高优秀教案经典小初高讲义(2)三角函数都是周期函数,y=tanα是三角函数,因此y=tanα是周期函数;(3)因为△ABC三边的长依次为3,4,5,所以△ABC是直角三角形.【解析】(1)一切奇数都不能被2整除,……………………………………大前提22015+1是奇数,…………………………………………………………………小
6、前提22015+1不能被2整除.…………………………………………………………结论(2)三角函数都是周期函数,…………………………………………………大前提y=tanα是三角函数.…………………………………………………………小前提y=tanα是周期函数.…………………………………………………………结论(3)一条边的平方等于其他两条边平方和的三角形是直角三角形,…大前提△ABC三边的长依次为3,4,5,且32+42=52,…………………………………………………………………小前提△ABC是直角三角形.………………………………………………………结论10.(2016
7、·南京高二检测)设m为实数,利用三段论证明方程x2-2mx+m-1=0有两个相异实根.【证明】因为如果一元二次方程ax2+bx+c=0(a≠0)的判别式Δ=b2-4ac>0,那么方程有两个相异实根.…………………………………………………大前提Δ=(-2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,………………………………小前提所以方程x2-2mx+m-1=0有两个相异实根.……………………………………………………………………………………结论一、选择题(每小题5分,共10分)1.(2016·鞍山高二检测)有一段演绎推理是这样的:“若一直线
8、平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直
此文档下载收益归作者所有