有机光电材料综述.doc

有机光电材料综述.doc

ID:48831972

大小:44.00 KB

页数:12页

时间:2020-01-31

有机光电材料综述.doc_第1页
有机光电材料综述.doc_第2页
有机光电材料综述.doc_第3页
有机光电材料综述.doc_第4页
有机光电材料综述.doc_第5页
资源描述:

《有机光电材料综述.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机EL器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(or

2、ganiclight-emittingdevice,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即PLED。不过,通常人们将两者笼统的简称为有机电致发光材料OLED。一.原理部分与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低..。综上所述,有机电致发光材料在薄膜

3、晶体管、太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1.光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据;2.光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,

4、也是实现产业化、工业化的根本依据。1.基态与激发态“基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。2.吸收和发射..分子的激发需

5、要吸收一定能量,吸收一定的能量后,分子就处于不稳定的激发态了,这时很容易以各种方式将这种不稳定的能量释放出来,这一过程被称为激发态的失活或者猝灭。失活的过程既可以是分子内的,也可以是分子间的;既可以是物理失活,也可以通过化学反应失活。我们在本文中,主要讨论的是激发态分子内的物理失活,主要包括辐射跃迁和非辐射跃迁两种失活方式。辐射跃迁是通过释放光子,使得高能的激发态失活到低能的基态的过程,是光吸收的逆过程,因此辐射跃迁与光吸收的多方面都有密切的联系。与辐射跃迁相应的波长和强度的关系称之为荧光光谱和磷光光谱,与吸收光过程相关的波长与强度的关系称之为吸收光谱。吸收和辐射都遵守Franck-Condo

6、n原理:原子或原子团的直径通常为0.2~1.0nm,由此可得光波通过原子团的时间大约为10-17s,也就是说,当光子穿过分子时,分子只经历了至多1/1000个振动周期。这样,我们就可以认为在势能面上的跃迁是垂直发生的,在跃迁的一瞬间分子构型保持不变,这就是Franck-Condon原理3.荧光和磷光的产生荧光与磷光都是辐射跃迁过程,二者都是基态跃迁,但是二者的不同点是:荧光是从基态(S0)跃迁到激发单重态(S1)产生的,而磷光是从基态跃迁到激发三重态(T1)产生的。分子经过激发,电子从基态跃迁到激发态(10-15s),根据Franck-Condon原理,它到达了电子激发态的某一个振动激发态上,

7、分子会以热的方式耗散一部分能量,从振动激发态弛豫到..S1的最低振动态上,这一过程就是激发态的“振动弛豫”(vibrationalrelaxation)。振动弛豫发生的时间范围大概是10-14~10-12s,所以分子很快就弛豫到S1的最低振动态上。由于激发单重态荧光辐射跃迁的寿命一般在10-8s能量级上,因此,荧光辐射跃迁的始态几乎都是S1的最低振动态。绝大多数分子的荧光跃迁都是S1跃迁到S0。荧

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。