圆的标准方程优秀教案.doc

圆的标准方程优秀教案.doc

ID:48831911

大小:248.50 KB

页数:6页

时间:2020-01-31

圆的标准方程优秀教案.doc_第1页
圆的标准方程优秀教案.doc_第2页
圆的标准方程优秀教案.doc_第3页
圆的标准方程优秀教案.doc_第4页
圆的标准方程优秀教案.doc_第5页
资源描述:

《圆的标准方程优秀教案.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、.第四章圆与方程4.1圆的方程4.1.1圆的标准方程教材分析本节内容数学必修2第四章第一节的起始课,是在学习了直线的有关知识后学习的,圆是学生比较熟悉的曲线,在初中就已学过圆的定义.这节课主要是根据圆的定义,推出圆的标准方程,并会求圆的标准方程.本节课的教学重点是圆的标准方程的理解、掌握;难点是会根据不同的已知条件,利用待定系数法,几何法求圆的标准方程.通过本节课的学习培养学生用坐标法研究几何问题的能力,使学生加深对数形结合思想和待定系数法的理解,增强学生的数学意识.课时分配本节内容用1课时的时间完成

2、,主要讲解圆的标准方程的推导和应用.教学目标重点:圆的标准方程的理解、掌握.难点:会根据不同的已知条件,利用待定系数法求圆的标准方程.知识点:会求圆的标准方程.能力点:根据不同的已知条件求圆的标准方程.教育点:尝试用代数方法解决几何问题探究过程,体会数形结合、待定系数法的思想方法.自主探究点:点与圆的位置关系的判断方法.考试点:会求圆的标准方程.易错易混点:不同的已知条件,如何恰当的求圆的标准方程.拓展点:如何根据不同的条件,灵活适当地选取恰当的方法求圆的标准方程.教具准备多媒体课件和三角板课堂模式学

3、案导学一、引入新课问题1:什么是圆?【设计意图】回顾圆的定义便于问题2的回答.【设计说明】学生回答.问题2:在平面直角坐标系中,两点确定一条直线,一点和倾斜角也可以确定一条直线,那么在什么条件下可以确定一个圆?【设计意图】使学生在已有知识的基础上,结合圆的定义回答出确定圆的两个要素—圆心(定位)和半径(定形).【设计说明】教师引导,学生回答.问题3:直线可以用一个方程表示,圆也可以用一个方程来表示吗?【设计意图】使学生在已有知识和经验的基础上,探索新知,引出本课题.【设计说明】教师指出建立圆的方程正是

4、我们本节课要探究的问题.二、探究新知..问题4:已知圆的圆心坐标为,半径为(其中、、都是常数,),如何确定圆的方程?师:类比直线点斜式方程的推导方法,引导学生回答求曲线的方程的一般步骤.师生:教师引导学生回答如何求曲线的方程.(1)建立适当的直角坐标系,用(x,y)表示曲线上任意点M的坐标;(2)写出适合条件P的点M的集合P={M

5、P(M)

6、};(3)用坐标表示条件P(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明化简后的方程就是所求曲线的方程.师:设M(x,y)是

7、圆上任意一点,根据圆的定义如何建立x,y满足的关系式?yxOAM生:利用两点间的距离公式,写出点M的坐标适合的条件.师:如何进一步化简上述关系式得出圆的方程?生:学生自己化简得出圆的方程为.【设计意图】让学生掌握圆的标准方程的推导方法.【设计说明】学生自己化简得出结论便于学生理解记忆.三、理解新知圆的标准方程:,其中圆心为,半径为.强调:熟记圆的标准方程的结构特点,并能观察出圆心和半径.师:那么确定圆的标准方程需要几个独立条件?生:只要、、三个量确定了且,圆的方程就给定了.师:圆心在原点圆的方程是什么

8、?生:【设计意图】便于学生理解掌握圆的标准方程,为准确地运用新知,作必要的铺垫.【设计说明】学生自己归纳总结.基础检测:1.圆的圆心A的坐标为______,半径为________.2.圆的圆心,半径是?【设计意图】熟练掌握圆的标准方程与圆心坐标,半径长的关系.【设计说明】学生口答.四、运用新知例1.写出圆心为,半径长等于5的圆的方程,并判断点是否在这个圆上.分析:判断圆心是否在圆上,可以从计算点到圆心的距离入手.【设计意图】圆的标准方程的直接应用,并会判断点与圆的位置关系.【设计说明】培养学生分析问题

9、、解决问题的能力和良好的解题习惯...探究:怎样判断点在圆上?圆内?还是圆外?【设计意图】学生自己探讨发现点与圆的位置关系的判定方法,从而归纳出下列结论.(1),点在圆外(2),点在圆上(3),点在圆内【设计说明】培养学生分析问题、解决问题的能力练习:1.点与圆的位置关系()A.在圆外B.在圆上C.在圆内D.在圆上或圆外2.求经过点P(5,1),圆心在点C(8,-3)的圆的标准方程.3.求以点位圆心且与直线相切的圆的标准方程.【设计意图】根据圆心和半径熟练写出圆的标准方程.【设计说明】学生爬黑板.例2

10、.的三个顶点的坐标是,求它的外接圆的方程.师生共同分析:不在同一条直线上的三个点可以确定一个圆,三角形有唯一的外接圆.从圆的标准方程可知,要确定圆的标准方程,可用待定系数法确定三个参数.解法一:设所求圆的方程是(1)因为都在圆上,所以它们的坐标都满足方程(1).于是所以,的外接圆的方程为.OxyL1L2MABCDE【设计意图】掌握待定系数法求圆的标准方程.【设计说明】学生自己运算解决.师:除上述方法求圆的标准方程外还有没有其它方法?师:教师画图引导.生:

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。