欢迎来到天天文库
浏览记录
ID:48813717
大小:360.00 KB
页数:12页
时间:2020-01-28
《函数概念发展史.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、函数概念发展史制作人:唐沁1.早期函数概念几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。伽利略1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐
2、标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。戈特弗里德·威廉·莱布尼茨2.十八世纪函数概念--代数观念下的函数1718年约翰•贝努利(JohannBernoulli,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。约翰·伯努利(BernoulliJohan)1667-1748瑞士数学家欧拉L.Euler1707-1783瑞士数学家把函数定义为“如果某些变量,以某一种方式依赖于另一
3、些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”————Euler3.十九世纪函数概念--对应关系下的函数1821年,柯西(Cauchy,法,1789-1857)从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。柯西(Cauchy,法,1789-1857)1822年傅里叶(Fourier
4、,法国,1768--1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。傅里叶(Fourier,法国,1768--1830)狄利克雷P.G.L.Dirichlet1805-1859德国数学家1837年狄利克雷(Dirichlet,德,1805-1859)突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有
5、数学家接受。这就是人们常说的经典函数定义。等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。4.现代函数概念--集合论下的函数1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使
6、豪斯道夫的定义很严谨了。1930年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”李善兰1811-1882清朝数学家在1859年和英国传教士伟烈亚力和译的《代微积拾积》中首次将“function”译做“函数”,此译名沿用至今。对为什么这样翻译这个概念,书中解释说“凡此变数中函彼变数者,则此为彼之函数”;这里的“函”是包含的意思。中文“函数”名称的由来
此文档下载收益归作者所有