理论力学经典课件-振动.ppt

理论力学经典课件-振动.ppt

ID:48752516

大小:2.98 MB

页数:83页

时间:2020-01-21

理论力学经典课件-振动.ppt_第1页
理论力学经典课件-振动.ppt_第2页
理论力学经典课件-振动.ppt_第3页
理论力学经典课件-振动.ppt_第4页
理论力学经典课件-振动.ppt_第5页
资源描述:

《理论力学经典课件-振动.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、机械振动基础※引言※单自由度系统的自由振动※计算固有频率的能量法※单自由度系统的有阻尼自由振动※单自由度系统的无阻尼受迫振动※单自由度系统的有阻尼受迫振动※结论与讨论引言振动是一种运动形态,是指物体在平衡位置附近作往复运动。物理学知识的深化和扩展-物理学中研究质点的振动;工程力学研究研究系统的振动,以及工程构件和工程结构的振动。振动属于动力学第二类问题-已知主动力求运动。振动问题的研究方法-与分析其他动力学问题相类似:选择合适的广义坐标;分析运动;分析受力;选择合适的动力学定理;建立运动微分方程;求解运动微分方程,利用初始条件确定积分常数。振动问题的研究

2、方法-与分析其他动力学问题不同的是:一般情形下,都选择平衡位置作为广义坐标的原点。研究振动问题所用的动力学定理:矢量动力学基础中的-动量定理;动量矩定理;动能定理;达朗贝尔原理。分析动力学基础中的-拉格朗日方程。按激励特性划分:振动问题的分类自由振动-没有外部激励,或者外部激励除去后,系统自身的振动。参激振动-激励源为系统本身含随时间变化的参数,这种激励所引起的振动。自激振动-系统由系统本身运动所诱发和控制的激励下发生的振动。受迫振动-系统在作为时间函数的外部激励下发生的振动,这种外部激励不受系统运动的影响。按系统特性或运动微分方程类型划分:线性振动-

3、系统的运动微分方程为线性方程的振动。非线性振动-系统的刚度呈非线性特性时,将得到非线性运动微分方程,这种系统的振动称为非线性振动。按系统的自由度划分:单自由度振动-一个自由度系统的振动。多自由度振动-两个或两个以上自由度系统的振动。连续系统振动-连续弹性体的振动。这种系统具有无穷多个自由度。§19-1单自由度系统的自由振动l0mkkxOxl0stFW1.自由振动微分方程l0——弹簧原长;k——弹簧刚性系数;st——弹簧的静变形;取静平衡位置为坐标原点,x向下为正,则有:A——振幅;n——固有频率;(n+)——相位;——初相位。单自由度线性系统无阻

4、尼自由振动微分方程物理学基础的扩展这一方程,可以扩展为广义坐标的形式例题1mv提升重物系统中,钢丝绳的横截面积A=2.89×10-4m2,材料的弹性模量E=200GPa。重物的质量m=6000kg,以匀速v=0.25m/s下降。当重物下降到l=25m时,钢丝绳上端突然被卡住。l求:(1)重物的振动规律;(2)钢丝绳承受的最大张力。解:钢丝绳-重物系统可以简化为弹簧-物块系统,弹簧的刚度为mk静平衡位置Ox设钢丝绳被卡住的瞬时t=0,这时重物的位置为初始平衡位置;以重物在铅垂方向的位移x作为广义坐标,则系统的振动方程为方程的解为利用初始条件求得mk静平衡位置OxmxW

5、FT(2)钢丝绳承受的最大张力。取重物为研究对象l固定端均质等截面悬臂梁,长度为l,弯曲刚度为EI。梁的自由端放置一质量为m的物块。若不计梁的质量。试写出梁-物块系统的运动微分方程。例题2mEIl固定端ystOy考察梁和物块所组成的系统。以物块铅垂方向的位移作为广义坐标q=y,坐标原点O设在梁变形后的平衡位置,这一位置与变形前的位置之间的距离,即为物块静载作用下的挠度,亦即静挠度,用yst表示。分析物块运动到任意位置(坐标为y)时,物块的受力:应用牛顿第二定律W=mgF分析物块运动到任意位置(坐标为y)时,梁的自由端位移与力之间的关系EIl固定端F'yystmEIl

6、固定端Oy此即梁-物块的运动微分方程串联弹簧与并联弹簧的等效刚度k1k2mgk1mgk21.串联k1k2mk1k2mmgF1F22.并联k4k3k2k1m图示系统中有四根铅直弹簧,它们的刚度系数分别为k1、k2、k3、k4且k1=2k2=3k3=4k4。假设质量为的物块被限制在光滑铅直滑道中作平动。例题3试求此系统的固有频率。解:(1)计算3、4的等效刚度(2)计算2、3、4的等效刚度k4k3k2k1m解:(1)计算3、4的等效刚度(2)计算2、3、4的等效刚度(3)计算系统的等效刚度(4)计算系统的固有频率?1mkO在图中,当把弹簧原长在中点O固定后,系统的固有频

7、率与原来的固有频率的比值为。kkml在图中,当物块在中点时其系统的固有频率为n0,现将物块改移至距上端处,则其固有频率=n0。?2mkal例题4图示结构中,杆在水平位置处于平衡,若k、m、a、l等均为已知。求:系统微振动的固有频率mgF解:取静平衡位置为其坐标原点,由动量矩定理,得在静平衡位置处,有mkalmgF在静平衡位置处,有§19-2计算固有频率的能量法mk静平衡位置Ox物块的动能为取静平衡位置为零势能点,有在静平衡位置处,有物块在平衡位置处,其动能最大物块在偏离平衡位置的极端处,其势能最大无阻尼自由振动系统是保守系统,系统的机械能守恒mkal解

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。