高中数学选修4-4 2.4渐开线与摆线.ppt

高中数学选修4-4 2.4渐开线与摆线.ppt

ID:48746772

大小:1.25 MB

页数:25页

时间:2020-01-21

高中数学选修4-4   2.4渐开线与摆线.ppt_第1页
高中数学选修4-4   2.4渐开线与摆线.ppt_第2页
高中数学选修4-4   2.4渐开线与摆线.ppt_第3页
高中数学选修4-4   2.4渐开线与摆线.ppt_第4页
高中数学选修4-4   2.4渐开线与摆线.ppt_第5页
资源描述:

《高中数学选修4-4 2.4渐开线与摆线.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、四 渐开线与摆线1.渐开线(1)把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切而逐渐展开,那么笔尖画出的曲线叫做圆的渐开线,相应的定圆叫做渐开线的基圆.(2)圆的渐开线的参数方程:2.摆线(1)圆的摆线就是一个圆沿着一条定直线无滑动地滚动时,圆周上一个定点的轨迹,圆的摆线又叫旋轮线.(2)圆的摆线的参数方程:做一做1半径为2的圆的渐开线的参数方程为()答案:C做一做2半径为2的圆的摆线的参数方程为()答案:C思考辨析判断下列说法是否正确,正确的在后面的括号内画“√”,错误

2、的画“×”.(1)只有圆才有渐开线.()(2)渐开线和摆线的定义是一样的,只是绘图的方法不一样,所以才得到不同的图形.()(3)对于同一个圆,如果建立的直角坐标系的位置不同,画出的渐开线的形状就不同.()(4)在求圆的摆线和渐开线参数方程时,如果建立的坐标系的原点和坐标轴不同,可能会得到不同的参数方程.()×××√探究一探究二思维辨析圆的渐开线、摆线的参数方程的理解探究一探究二思维辨析探究一探究二思维辨析探究一探究二思维辨析【例2】已知生成摆线的圆的直径为80mm,则摆线的参数方程为.分析:直接代入摆线的参数方程

3、即可.探究一探究二思维辨析探究一探究二思维辨析探究一探究二思维辨析渐开线、摆线的参数方程的应用【例3】导学号73760033已知圆的直径为2,其渐开线的参数方程对应的曲线上的A,B两点所对应的参数分别是,求A,B两点间的距离.分析:先写出圆的渐开线的参数方程,再把点A,B所对应的参数分别代入参数方程可得A,B两点的坐标,然后使用两点间的距离公式求得A,B间的距离.探究一探究二思维辨析探究一探究二思维辨析探究一探究二思维辨析变式训练3设摆线(t为参数,0≤t≤2π)与直线y=1相交于A,B两点,求A,B两点间的距离

4、.探究一探究二思维辨析对参数φ的几何意义理解不全面致误典例已知一个圆的摆线经过定点(1,0),请写出该摆线的参数方程.错解令r(1-cosφ)=0可得cosφ=1,所以φ=0,代入x=r(φ-sinφ)可得x=0.故此题无解.正解令r(1-cosφ)=0可得cosφ=1,所以φ=2kπ(k∈Z).代入x=r(φ-sinφ)可得x=r(2kπ-sin2kπ)=1.探究一探究二思维辨析探究一探究二思维辨析变式训练若半径为5的圆的摆线上某点的纵坐标为0,则其横坐标可能是()A.πB.5πC.10πD.12π解析:根据条

5、件可知圆的摆线的参数方程为(φ为参数),把y=0代入可得cosφ=1,所以φ=2kπ(k∈Z).而x=5φ-5sinφ=10kπ(k∈Z).根据选项可知应选C.答案:C123451.已知圆的渐开线的参数方程为(φ为参数),则此渐开线对应基圆的面积是()A.1B.πC.2D.2π解析:由参数方程知基圆的半径为1,故其面积为π.答案:B12345答案:A123453.若一个圆的渐开线的参数方程为(φ为参数),则相应的摆线的参数方程为.123454.已知圆的方程为x2+y2=25,点P为其渐开线上一点,对应的参数φ=,

6、则点P的坐标为.123455.有一标准的渐开线齿轮,齿轮的齿廓线的基圆直径为22mm,求齿廓线所在圆的渐开线的参数方程.解:因为基圆的直径为22mm,所以基圆的半径为11mm,因此齿廓线所在圆的渐开线的参数方程为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。