欢迎来到天天文库
浏览记录
ID:48725176
大小:127.50 KB
页数:13页
时间:2020-01-20
《数学北师大版八年级下册分式方程第二节PPT.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5章分式与分式方程5.4分式方程——基本概念和解法学习目标了解分式方程的概念。会用分式方程表示实际问题中的等量关系。会解可化为一元一次方程的分式方程。会检验根的合理性,进一步理解增根产生的原因。复习回顾1.与的最简公分母是2.与的最简公分母是3.解方程:情境引入小李的年龄加5与小李的年龄减5的比为3比2,小李的年龄是多少?解:设小李的年龄为x岁,由题意,得思考:以前我们学过哪些方程?这个方程与以前学过的方程哪里不同?概念理解分式方程的定义:分母中含有未知数的方程叫做分式方程(fractionalequation)。判断:下列各式哪些是分
2、式方程?例1.解方程:解:方程两边都乘x(x-2),得x=3(x-2).解这个方程,得x=3.检验:将x=3带入原方程,得左边=1,右边=1,左边=右边所以,x=3是原方程的根。问:为什么乘x(x-2)?分式方程转化为整式方程不熟悉的熟悉的转化为问:为什么要检验?解一元一次方程时,检验吗?解二元一次方程时,检验吗?解方程:小明的解法如下:方程两边都乘x-2,得1-x=-1-2(x-2).解这个方程,得x=2.你认为x=2是原方程的根吗?另解:移项,得因为x-2≠0所以-1=-2(矛盾)所以原方程无解你明白解分式方程为什么要检验了吗?在这里
3、x=2不是原方程的根,因为它使分式方程的分母为零。我们把它称为原方程的增根。增根产生的原因是,我们在方程的两边同乘了一个使分母为零的整式。因为解分式方程可能产生增根,所以解分式方程必须检验。通常只需检验所得的根是否使原方程中的分式的分母的值等于零就可以了。例2.解方程:思考:解分式方程需要经过那几个步骤?分式方程整式方程x=ax=a是原方程的根。x=a是原方程的增根。去分母两边同乘最简公分母解整式方程检验最简公分母不为零最简公分母为零牛刀小试解方程:课堂小结什么是分式方程?解分式方程有哪些步骤?当堂小测作业
此文档下载收益归作者所有