欢迎来到天天文库
浏览记录
ID:48697519
大小:204.00 KB
页数:19页
时间:2020-02-27
《全等三角形经典题型50题带答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、专业.专注全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求ADADBC延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2在三角形ABE中,AB-BE2、EDF(边角边)。所以BF=EF,∠CBF=∠DEF。连接BE。在三角形BEF中,BF=EF。所以∠EBF=∠BEF。又因为∠ABC=∠AED。所以∠ABE=∠AEB。所以AB=AE。在三角形ABF和三角形AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。所以三角形ABF和三角形AEF全等。所以∠BAF=∠EAF(∠1=∠2)。BACDF21E1.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴3、EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC2.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CACDB证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BD.学习参考.专业.专注AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C1.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接4、CF因为CE⊥AB所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE12.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则5、:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.DCBAFE13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=.学习参考.专业.专注∠CAB//ED,AE//BD推出AE=BD,又有AF=CD,EF=BC所以三角形AEF全等于三角形DCB,所以:∠C=∠F14.已知:AB=CD,∠A=∠D,求证:∠B=∠CABCD证明:设线段AB,CD所在的直线交于E,(当AD6、BC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE(等量加等量,或等量减等量)所以:△BEC是等腰三角形所以:角B=角C.15.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB7、180-(∠ABC+∠C=180-4∠C∠1=∠BAC/2=90-2∠C∠ABE=90-∠1=2∠C延长BE交AC于F因为,∠1=∠2,BE⊥AE所以,△ABF是等腰三角形AB=AF,BF=2BE∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠CBF=CFAC-AB=AC-AF=CF=BF=2BE15.已知,E是AB中点,AF=BD,BD=5,AC=7,求FAEDCBDC作AG∥BD交DE延长线于GAGE全等BDEAG=BD=5AGF∽CDFAF=AG=5所以DC=CF=218.(5分)如图,在△ABC
2、EDF(边角边)。所以BF=EF,∠CBF=∠DEF。连接BE。在三角形BEF中,BF=EF。所以∠EBF=∠BEF。又因为∠ABC=∠AED。所以∠ABE=∠AEB。所以AB=AE。在三角形ABF和三角形AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。所以三角形ABF和三角形AEF全等。所以∠BAF=∠EAF(∠1=∠2)。BACDF21E1.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC证明:过E点,作EG//AC,交AD延长线于G则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE(AAS)∴
3、EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=EG∴EF=AC2.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CACDB证明:在AC上截取AE=AB,连接ED∵AD平分∠BAC∴∠EAD=∠BAD又∵AE=AB,AD=AD∴⊿AED≌⊿ABD(SAS)∴∠AED=∠B,DE=DB∵AC=AB+BD.学习参考.专业.专注AC=AE+CE∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C1.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接
4、CF因为CE⊥AB所以∠CEB=∠CEF=90°因为EB=EF,CE=CE,所以△CEB≌△CEF所以∠B=∠CFE因为∠B+∠D=180°,∠CFE+∠CFA=180°所以∠D=∠CFA因为AC平分∠BAD所以∠DAC=∠FAC又因为AC=AC所以△ADC≌△AFC(SAS)所以AD=AF所以AE=AF+FE=AD+BE12.如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。证明:在BC上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB平行于CD,则
5、:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD.DCBAFE13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=.学习参考.专业.专注∠CAB//ED,AE//BD推出AE=BD,又有AF=CD,EF=BC所以三角形AEF全等于三角形DCB,所以:∠C=∠F14.已知:AB=CD,∠A=∠D,求证:∠B=∠CABCD证明:设线段AB,CD所在的直线交于E,(当AD
6、BC时,E点是射线AB,DC的交点)。则:△AED是等腰三角形。所以:AE=DE而AB=CD所以:BE=CE(等量加等量,或等量减等量)所以:△BEC是等腰三角形所以:角B=角C.15.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB7、180-(∠ABC+∠C=180-4∠C∠1=∠BAC/2=90-2∠C∠ABE=90-∠1=2∠C延长BE交AC于F因为,∠1=∠2,BE⊥AE所以,△ABF是等腰三角形AB=AF,BF=2BE∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠CBF=CFAC-AB=AC-AF=CF=BF=2BE15.已知,E是AB中点,AF=BD,BD=5,AC=7,求FAEDCBDC作AG∥BD交DE延长线于GAGE全等BDEAG=BD=5AGF∽CDFAF=AG=5所以DC=CF=218.(5分)如图,在△ABC
7、180-(∠ABC+∠C=180-4∠C∠1=∠BAC/2=90-2∠C∠ABE=90-∠1=2∠C延长BE交AC于F因为,∠1=∠2,BE⊥AE所以,△ABF是等腰三角形AB=AF,BF=2BE∠FBC=∠ABC-∠ABE=3∠C-2∠C=∠CBF=CFAC-AB=AC-AF=CF=BF=2BE15.已知,E是AB中点,AF=BD,BD=5,AC=7,求FAEDCBDC作AG∥BD交DE延长线于GAGE全等BDEAG=BD=5AGF∽CDFAF=AG=5所以DC=CF=218.(5分)如图,在△ABC
此文档下载收益归作者所有