欢迎来到天天文库
浏览记录
ID:48632145
大小:1.28 MB
页数:11页
时间:2020-01-30
《抛物线经典例题.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、抛物线(1)抛物线——二次曲线【例1】P为抛物线上任一点,F为焦点,则以PF为直径的圆与y轴()相交相切相离位置由P确定【解析】如图,抛物线的焦点为,准线是.作PH⊥于H,交y轴于Q,那么,且.作MN⊥y轴于N则MN是梯形PQOF的中位线,.故以PF为直径的圆与y轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】过抛物线的焦点F作直线交抛物线于两点,求证:(1)(2)【证明】(1)如图设抛物线的准线为,作,.两式相
2、加即得:(2)当AB⊥x轴时,有成立;当AB与x轴不垂直时,设焦点弦AB的方程为:.代入抛物线方程:.化简得:∵方程(1)之二根为x1,x2,∴..故不论弦AB与x轴是否垂直,恒有成立.(3)切线——抛物线与函数【例3】证明:过抛物线上一点M(x0,y0)的切线方程是:y0y=p(x+x0)【证明】对方程两边取导数:.由点斜式方程:y0y=p(x+x0)(4)定点与定值——抛物线埋在深处的宝藏例如:1.一动圆的圆心在抛物线上,且动圆恒与直线相切,则此动圆必过定点()显然.本题是例1的翻版,该圆必过抛物线的焦点,选B.2.抛物线的通径长为2p;3.设抛物线过焦点的弦两端分别为,那么:
3、以下再举一例【例4】设抛物线的焦点弦AB在其准线上的射影是A1B1,证明:以A1B1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A1B1=AB=2p,而A1B1与AB的距离为p,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB的一般情形给于证明.【证明】如图设焦点两端分别为,那么:设抛物线的准线交x轴于C,那么.这就说明:以A1B1为直径的圆必过该抛物线的焦点.●通法特法妙法(1)解析法——为对称问题解困排难解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等).【例5】(07.四川文科卷.
4、10题)已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则
5、AB
6、等于()A.3B.4C.3D.4【分析】直线AB必与直线x+y=0垂直,且线段AB的中点必在直线x+y=0上,因得解法如下.【解析】∵点A、B关于直线x+y=0对称,∴设直线AB的方程为:.由设方程(1)之两根为x1,x2,则.设AB的中点为M(x0,y0),则.代入x+y=0:y0=.故有.从而.直线AB的方程为:.方程(1)成为:.解得:,从而,故得:A(-2,-1),B(1,2).,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,
7、这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(07.全国1卷.11题)抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点,,垂足为,则的面积()A.B.C.D.【解析】如图直线AF的斜率为时∠AFX=60°.△AFK为正三角形.设准线交x轴于M,则且∠KFM=60°,∴.选C.【评注】(1)平面几何知识:边长为a的正三角形的面积用公式计算.(2)本题如果用解析法,需先列方程组求点A的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追
8、本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单.【例7】(07.湖北卷.7题)双曲线的左准线为,左焦点和右焦点分别为和;抛物线的线为,焦点为与的一个交点为,则等于()A.B.C.D.【分析】这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半焦距c,离心率为e,作,令.∵点M在抛物线上,,这就是说:的实质是离心率e.其次,与离心率e有什么关系?注意到:.这样,最后的答案就自然浮出水面了:由于.∴选A..(4)三角法——本身也是一种解析三角学
9、蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(07.重庆文科.21题)如图,倾斜角为a的直线经过抛物线的焦点F,且与抛物线交于A、B两点。(Ⅰ)求抛物线的焦点F的坐标及准线l的方程;(Ⅱ)若a为锐角,作线段AB的垂直平分线m交x轴于点P,证明
10、FP
11、-
12、FP
13、cos2a为定值,并求此定值
此文档下载收益归作者所有