Matlab求解微分方程(组)与偏微分方程(组).doc

Matlab求解微分方程(组)与偏微分方程(组).doc

ID:48616932

大小:235.50 KB

页数:14页

时间:2020-01-29

Matlab求解微分方程(组)与偏微分方程(组).doc_第1页
Matlab求解微分方程(组)与偏微分方程(组).doc_第2页
Matlab求解微分方程(组)与偏微分方程(组).doc_第3页
Matlab求解微分方程(组)与偏微分方程(组).doc_第4页
Matlab求解微分方程(组)与偏微分方程(组).doc_第5页
资源描述:

《Matlab求解微分方程(组)与偏微分方程(组).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.word可编辑.第四讲Matlab求解微分方程(组)理论介绍:Matlab求解微分方程(组)命令求解实例:Matlab求解微分方程(组)实例实际应用问题通过数学建模所归纳得到的方程,绝大多数都是微分方程,真正能得到代数方程的机会很少.另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们必须研究微分方程(组)的解法:解析解法和数值解法.一.相关函数、命令及简介1.在Matlab中,用大写字母D表示导数,Dy表示y关于自变量的一阶导数,D2y表示y关于自变量的二阶导数,依此类推.函数dsolve用来解决常微分方程(组)的求解问题,调用格式为:X

2、=dsolve(‘eqn1’,’eqn2’,…)函数dsolve用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.注意,系统缺省的自变量为t2.函数dsolve求解的是常微分方程的精确解法,也称为常微分方程的符号解.但是,有大量的常微分方程虽然从理论上讲,其解是存在的,但我们却无法求出其解析解,此时,我们需要寻求方程的数值解,在求常微分方程数值解方面,MATLAB具有丰富的函数,我们将其统称为solver,其一般格式为:[T,Y]=solver(odefun,tspan,y0)说明:(1)solver为命令ode45、ode23、ode113

3、、ode15s、ode23s、ode23t、ode23tb、ode15i之一..专业.专注..word可编辑.(2)odefun是显示微分方程在积分区间tspan上从到用初始条件求解.(3)如果要获得微分方程问题在其他指定时间点上的解,则令tspan(要求是单调的).(4)因为没有一种算法可以有效的解决所有的ODE问题,为此,Matlab提供了多种求解器solver,对于不同的ODE问题,采用不同的solver.表1Matlab中文本文件读写函数求解器ODE类型特点说明ode45非刚性单步算法:4、5阶Runge-Kutta方程;累计截断误差大部分场合的首选算法ode23非刚性单

4、步算法:2、3阶Runge-Kutta方程;累计截断误差使用于精度较低的情形ode113非刚性多步法:Adams算法;高低精度可达计算时间比ode45短ode23t适度刚性采用梯形算法适度刚性情形ode15s刚性多步法:Gear’s反向数值微分;精度中等若ode45失效时,可尝试使用ode23s刚性单步法:2阶Rosebrock算法;低精度当精度较低时,计算时间比ode15s短ode23tb刚性梯形算法;低精度当精度较低时,计算时间比ode15s短说明.专业.专注..word可编辑.:ode23、ode45是极其常用的用来求解非刚性的标准形式的一阶微分方程(组)的初值问题的解的M

5、atlab常用程序,其中:ode23采用龙格-库塔2阶算法,用3阶公式作误差估计来调节步长,具有低等的精度.ode45则采用龙格-库塔4阶算法,用5阶公式作误差估计来调节步长,具有中等的精度.3.在matlab命令窗口、程序或函数中创建局部函数时,可用内联函数inline,inline函数形式相当于编写M函数文件,但不需编写M-文件就可以描述出某种数学关系.调用inline函数,只能由一个matlab表达式组成,并且只能返回一个变量,不允许[u,v]这种向量形式.因而,任何要求逻辑运算或乘法运算以求得最终结果的场合,都不能应用inline函数,inline函数的一般形式为:Fun

6、ctionName=inline(‘函数内容’,‘所有自变量列表’)例如:(求解F(x)=x^2*cos(a*x)-b,a,b是标量;x是向量)在命令窗口输入:Fofx=inline(‘x.^2*cos(a*x)-b’,‘x’,’a’,’b’);g=Fofx([pi/3pi/3.5],4,1)系统输出为:g=-1.5483-1.7259注意:由于使用内联对象函数inline不需要另外建立m文件,所有使用比较方便,另外在使用ode45函数的时候,定义函数往往需要编辑一个m文件来单独定义,这样不便于管理文件,这里可以使用inline来定义函数.二.实例介绍1.几个可以直接用Matla

7、b求微分方程精确解的实例例1求解微分方程程序:symsxy;y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x’).专业.专注..word可编辑.例2求微分方程在初始条件下的特解并画出解函数的图形.程序:symsxy;y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x’);ezplot(y)例3求解微分方程组在初始条件下的特解并画出解函数的图形.程序:symsxyt[x,y]=dsolve('Dx+5*x+y=exp(t)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。