欢迎来到天天文库
浏览记录
ID:48609690
大小:995.47 KB
页数:20页
时间:2020-01-29
《苏教版九年级数学全册知识点汇总情况.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、实用标准文档第一章 教学内容:证明(二) 重点:直角三角形,线段垂直平分线与角平分线的证明 难点:证明逆命题的真假,角平分线的证明及其对逆命题的理解 易错点:线段的垂直平分线和角平分线的定理及逆定理的判别 第二章 教学内容:一元一次方程 重点:用配方法,公式法,分解因式法解一元一次方程 难点:黄金分割点的理解,用配方法解方程 易错点:利用因式分解法和公式法解方程 第三章 教学内容:证明(三) 重点:特殊的平行四边形的性质与判定,平行四边形的性质与判定 难点:特殊的平行四边形的证明 易错点:各定理之间的判别 第四章 教学
2、内容:视图与投影 重点:某物体的三视图与投影 难点:理解平行投影与中心投影的区别 易错点:三视图的理解,中心投影与平行投影的区别 第五章 教学内容:反比例函数 重点:反比例函数的表达式,反比例函数的图像的概念与性质 难点:反比例函数的运用,猜想,证明与拓展 易错点:主要区别反比例函数与x轴和与y轴无限靠近 第六章 教学内容:频率与概率 定义和命题:频率与概率的概念 难点:理解用频率去估计概率 易错点:频率是样本中才出现的,概率是整体中出项的苏教版九年级数学上知识点汇总第一章 图形与证明(二) 1.1 等腰三角形的性质定理:
3、等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。 等腰三角形的两底角相等(简称“等边对等角”)。 等腰三角形的判定定理: 如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。 1.2 直角三角形全等的判定定理: 斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。 角平分线的性质: 角平分线上的点到这个角的两边的距离相等。 角平分线的判定: 角的内部到角的两边距离相等的点,在这个角的平分线上。 直角三角形中,30°的角所对的直角边事斜边的一半。 1.3 平行四边
4、形的性质与判定: 文案大全实用标准文档定义:两组对边分别平行的四边形是平行四边形。 定理1:平行四边形的对边相等。 定理2:平行四边形的对角相等。 定理3:平行四边形的对角线互相平分。 判定——从边:1两组对边分别平行的四边形是平行四边形。 2一组对边平行且相等的四边形是平行四边形。 3两组对边分别相等的四边形是平行四边形。 从角:两组对角分别相等的四边形是平行四边形。 对角线:对角线互相平分的四边形是平行四边形。 矩形的性质与判定: 定义:有一个角的直角
5、的平行四边形是矩形。 定理1:矩形的4个角都是直角。 定理2:矩形的对角线相等。 定理:直角三角形斜边上的中线等于斜边的一半。 判定:1有三个角是直角的四边形是矩形。 2对角线相等的平行四边形是矩形。 菱形的性质与判定: 定义:有一组邻边相等的平行四边形是菱形。 定理1:菱形的4边都相等。 定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。 判定:1四条边都相等的四边形是菱形。 2对角线互相垂直的平行四边形是菱形。 正方形的性质与判定: 正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平
6、分,每一条对角线平分一组对角。 正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。 判定:1有一个角是直角的菱形是正方形。 2有一组邻边相等的平行四边形是正方形。1.4 等腰梯形的性质与判定 定义:两腰相等的梯形叫做等腰梯形。 定理1:等腰梯形同一底上的两底角相等。 定理2:等腰梯形的两条对角线相等。 判定:1在同一底上的两个角相等的梯形是等腰梯形。 2对角线相等的梯形是等腰梯形。 1.5 中位线 三角形的中位线平行于第三边,并且等于第三边的一半。 梯形的中位线平行于两底,并且等于两底的一半。 中点四边形:依
7、次连接一个四边形各边中点所得到的四边形称为中点四边形(中点四边形一定是平行四边形)。 原四边形对角线 中点四边形 相等 菱形 互相垂直 矩形 相等且互相垂直 正方形 第二章 数据的离散程度 2.1 极差: 一组数据中的最大值与最小值的差叫做极差。计算公式:极差=最大值-最小值。 极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小,则说明数据的波动幅度越小。 2.2 方差 各个数据与平均数的差的平均数叫做这组数据的方差,记作S2。 巧用方差公式: 1、基本公式:S2=n1[(X1-X—)2+(X2-X—)2+„„+(Xn
8、-X—)2] 2、简化公式:S2=n1[(X12+X22+„„+Xn2)-nX—2] 也可写成:S2=n1(
此文档下载收益归作者所有